論文の概要: Latent Diffusion for Medical Image Segmentation: End to end learning for fast sampling and accuracy
- arxiv url: http://arxiv.org/abs/2407.12952v2
- Date: Sat, 18 Jan 2025 03:43:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:16:41.771341
- Title: Latent Diffusion for Medical Image Segmentation: End to end learning for fast sampling and accuracy
- Title(参考訳): 医用画像分割のための潜時拡散:高速サンプリングと精度のためのエンド・ツー・エンド・ラーニング
- Authors: Fahim Ahmed Zaman, Mathews Jacob, Amanda Chang, Kan Liu, Milan Sonka, Xiaodong Wu,
- Abstract要約: 遅延空間における条件拡散は、複数の相互作用対象に対して正確な画像分割を保証する。
提案モデルでは,従来の決定論的セグメンテーションモデルと比較して,ノイズに対してかなり頑健であった。
- 参考スコア(独自算出の注目度): 14.545920180010201
- License:
- Abstract: Diffusion Probabilistic Models (DPMs) suffer from inefficient inference due to their slow sampling and high memory consumption, which limits their applicability to various medical imaging applications. In this work, we propose a novel conditional diffusion modeling framework (LDSeg) for medical image segmentation, utilizing the learned inherent low-dimensional latent shape manifolds of the target objects and the embeddings of the source image with an end-to-end framework. Conditional diffusion in latent space not only ensures accurate image segmentation for multiple interacting objects, but also tackles the fundamental issues of traditional DPM-based segmentation methods: (1) high memory consumption, (2) time-consuming sampling process, and (3) unnatural noise injection in the forward and reverse processes. The end-to-end training strategy enables robust representation learning in the latent space related to segmentation features, ensuring significantly faster sampling from the posterior distribution for segmentation generation in the inference phase. Our experiments demonstrate that LDSeg achieved state-of-the-art segmentation accuracy on three medical image datasets with different imaging modalities. In addition, we showed that our proposed model was significantly more robust to noise compared to traditional deterministic segmentation models. The code is available at https://github.com/FahimZaman/LDSeg.git.
- Abstract(参考訳): Diffusion Probabilistic Models (DPM) はサンプリングの遅さとメモリ消費の増大により非効率な推論に苦しむため、様々な医療画像への応用が制限される。
本研究では, 対象物体の学習された低次元潜在形状多様体と, エンド・ツー・エンド・エンド・フレームワークによる画像の埋め込みを利用した, 医用画像セグメンテーションのための新しい条件拡散モデリングフレームワーク(LDSeg)を提案する。
遅延空間における条件拡散は、複数の相互作用対象に対して正確な画像分割を保証するだけでなく、(1)高メモリ消費、(2)時間消費サンプリングプロセス、(3)前と逆のプロセスにおける不自然なノイズ注入といった従来のDPMベースのセグメンテーション法の基本問題にも取り組む。
エンドツーエンドのトレーニング戦略は、セグメント化特徴に関連する潜在空間におけるロバストな表現学習を可能にし、推論フェーズにおけるセグメント化生成のための後部分布からのサンプリングを著しく高速化する。
実験の結果,LDSegは画像の異なる3つの医用画像データセットに対して,最先端のセグメンテーション精度を達成できた。
さらに,従来の決定論的セグメンテーションモデルと比較して,提案モデルがノイズに対してかなり頑健であることを示した。
コードはhttps://github.com/FahimZaman/LDSeg.gitで公開されている。
関連論文リスト
- Unleashing the Potential of the Diffusion Model in Few-shot Semantic Segmentation [56.87049651707208]
セマンティックはインコンテクストタスクへと発展し、一般化的セグメンテーションモデルを評価する上で重要な要素となった。
我々の最初の焦点は、クエリイメージとサポートイメージの相互作用を容易にする方法を理解することであり、その結果、自己注意フレームワーク内のKV融合法が提案される。
そこで我々はDiffewSというシンプルで効果的なフレームワークを構築し,従来の潜在拡散モデルの生成フレームワークを最大限に保持する。
論文 参考訳(メタデータ) (2024-10-03T10:33:49Z) - I-MedSAM: Implicit Medical Image Segmentation with Segment Anything [24.04558900909617]
提案するI-MedSAMは、連続表現とSAMの両方の利点を利用して、クロスドメイン能力と正確な境界線を求める。
トレーニング可能なパラメータが1.6Mしかない提案手法は、離散的および暗黙的を含む既存の手法よりも優れている。
論文 参考訳(メタデータ) (2023-11-28T00:43:52Z) - Promise:Prompt-driven 3D Medical Image Segmentation Using Pretrained
Image Foundation Models [13.08275555017179]
単点プロンプトのみを用いたプロンプト駆動型3次元医用画像分割モデルProMISeを提案する。
今回,大腸癌と膵腫瘍の2つの領域に分布する2つのパブリックデータセットについて検討した。
論文 参考訳(メタデータ) (2023-10-30T16:49:03Z) - Two Approaches to Supervised Image Segmentation [55.616364225463066]
本研究は、深層学習とマルチセットニューロンのアプローチの比較実験を開発する。
ディープラーニングアプローチは、画像セグメンテーションの実行の可能性を確認した。
代替のマルチセット手法では、計算資源をほとんど必要とせずに精度を向上することができた。
論文 参考訳(メタデータ) (2023-07-19T16:42:52Z) - 3DSAM-adapter: Holistic adaptation of SAM from 2D to 3D for promptable tumor segmentation [52.699139151447945]
医用画像の領域分割を行うために, SAMを2次元から3次元に変換する新しい適応法を提案する。
本モデルでは, 腎腫瘍, 膵腫瘍, 大腸癌の3つのタスクのうち8.25%, 29.87%, 10.11%の3つのタスクにおいて, ドメイン・オブ・ザ・アーティヴ・メディカル・イメージ・セグメンテーション・モデルより優れ, 肝腫瘍セグメンテーションでも同様の性能が得られる。
論文 参考訳(メタデータ) (2023-06-23T12:09:52Z) - Conditional Diffusion Models for Weakly Supervised Medical Image
Segmentation [18.956306942099097]
条件拡散モデル(CDM)は、特定の分布の対象となる画像を生成することができる。
我々は,対象対象物の予測マスクを取得するために,CDMに隠されたカテゴリ認識意味情報を利用する。
本手法は,2つの医用画像セグメンテーションデータセット上で,最先端のCAMおよび拡散モデル法より優れる。
論文 参考訳(メタデータ) (2023-06-06T17:29:26Z) - Denoising Diffusion Semantic Segmentation with Mask Prior Modeling [61.73352242029671]
本稿では,従来の識別的アプローチのセマンティックセグメンテーション品質を,デノナイズ拡散生成モデルでモデル化したマスクを用いて改善することを提案する。
市販セグメンタを用いた先行モデルの評価を行い,ADE20KとCityscapesの実験結果から,本手法が競争力のある定量的性能を実現することを示す。
論文 参考訳(メタデータ) (2023-06-02T17:47:01Z) - Ambiguous Medical Image Segmentation using Diffusion Models [60.378180265885945]
我々は,グループ洞察の分布を学習することで,複数の可算出力を生成する単一拡散モデルに基づくアプローチを提案する。
提案モデルでは,拡散の固有のサンプリングプロセスを利用してセグメンテーションマスクの分布を生成する。
その結果,提案手法は既存の最先端曖昧なセグメンテーションネットワークよりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-04-10T17:58:22Z) - MedSegDiff: Medical Image Segmentation with Diffusion Probabilistic
Model [8.910108260704964]
拡散モデル(DPM)は近年,コンピュータビジョンにおいて最もホットな話題の1つとなっている。
MedSegDiff と名付けた一般的な医用画像分割タスクに対する DPM ベースモデルを提案する。
実験の結果,MedSegDiff は最先端 (SOTA) 手法よりも高い性能を示した。
論文 参考訳(メタデータ) (2022-11-01T17:24:44Z) - Diffusion Models for Implicit Image Segmentation Ensembles [1.444701913511243]
拡散モデルに基づく新しいセマンティックセグメンテーション手法を提案する。
トレーニングとサンプリングの手法を改良することにより,拡散モデルが医用画像の病変分割を行うことができることを示す。
最先端セグメンテーションモデルと比較して,本手法は良好なセグメンテーション結果と有意義な不確実性マップが得られる。
論文 参考訳(メタデータ) (2021-12-06T16:28:15Z) - Automatic size and pose homogenization with spatial transformer network
to improve and accelerate pediatric segmentation [51.916106055115755]
空間変換器ネットワーク(STN)を利用することにより、ポーズとスケール不変の新たなCNNアーキテクチャを提案する。
私たちのアーキテクチャは、トレーニング中に一緒に見積もられる3つのシーケンシャルモジュールで構成されています。
腹部CTスキャナーを用いた腎および腎腫瘍の分節法について検討した。
論文 参考訳(メタデータ) (2021-07-06T14:50:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。