論文の概要: Virtual Agents for Alcohol Use Counseling: Exploring LLM-Powered Motivational Interviewing
- arxiv url: http://arxiv.org/abs/2407.08095v1
- Date: Wed, 10 Jul 2024 23:50:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-12 21:19:34.306572
- Title: Virtual Agents for Alcohol Use Counseling: Exploring LLM-Powered Motivational Interviewing
- Title(参考訳): アルコール使用カウンセリングのための仮想エージェント:LCMを利用したモチベーション・インタビューの探索
- Authors: Ian Steenstra, Farnaz Nouraei, Mehdi Arjmand, Timothy W. Bickmore,
- Abstract要約: アルコール使用カウンセリングのためのモチベーション面接(MI)を行う仮想カウンセラーを開発した。
当社のアプローチでは,迅速なエンジニアリングと統合をユーザフレンドリな仮想プラットフォームに統合し,現実的で共感的なインタラクションを促進する。
- 参考スコア(独自算出の注目度): 7.899257236779216
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a novel application of large language models (LLMs) in developing a virtual counselor capable of conducting motivational interviewing (MI) for alcohol use counseling. Access to effective counseling remains limited, particularly for substance abuse, and virtual agents offer a promising solution by leveraging LLM capabilities to simulate nuanced communication techniques inherent in MI. Our approach combines prompt engineering and integration into a user-friendly virtual platform to facilitate realistic, empathetic interactions. We evaluate the effectiveness of our virtual agent through a series of studies focusing on replicating MI techniques and human counselor dialog. Initial findings suggest that our LLM-powered virtual agent matches human counselors' empathetic and adaptive conversational skills, presenting a significant step forward in virtual health counseling and providing insights into the design and implementation of LLM-based therapeutic interactions.
- Abstract(参考訳): アルコール使用カウンセリングのためのモチベーション面接(MI)を行う仮想カウンセラーの開発において,大規模言語モデル(LLM)の新たな適用法を提案する。
効果的なカウンセリングへのアクセスは、特に薬物乱用のために制限されており、仮想エージェントは、MIに固有のニュアンス通信技術をシミュレートするためにLLM機能を活用することで、有望なソリューションを提供する。
当社のアプローチでは,迅速なエンジニアリングと統合をユーザフレンドリな仮想プラットフォームに統合し,現実的で共感的なインタラクションを促進する。
我々はMI手法の複製と人間カウンセラーダイアログに焦点をあてた一連の研究を通じて,仮想エージェントの有効性を評価する。
最初の発見は、LLMを利用した仮想エージェントは、人間のカウンセラーの共感的かつ適応的な会話スキルと一致し、バーチャルヘルスカウンセリングにおいて大きな進歩を示し、LLMベースの治療相互作用の設計と実装に関する洞察を提供することを示唆している。
関連論文リスト
- The influence of persona and conversational task on social interactions with a LLM-controlled embodied conversational agent [40.26872152499122]
LLMを仮想人間として具現化することで、ユーザーはバーチャルリアリティーで対面のソーシャルインタラクションを行うことができる。
LLMがコントロールするエージェントとの社会的相互作用における人的・タスク的要因の影響はいまだ不明である。
論文 参考訳(メタデータ) (2024-11-08T15:49:42Z) - Interactive Dialogue Agents via Reinforcement Learning on Hindsight Regenerations [58.65755268815283]
多くの実際の対話は対話的であり、つまりエージェントの発話が会話の相手に影響を与えるか、情報を引き出すか、意見を変えるかである。
この事実を利用して、既存の最適データを書き直し、拡張し、オフライン強化学習(RL)を介してトレーニングする。
実際の人間によるユーザ調査の結果、我々のアプローチは既存の最先端の対話エージェントを大きく上回っていることがわかった。
論文 参考訳(メタデータ) (2024-11-07T21:37:51Z) - Multimodal Fusion with LLMs for Engagement Prediction in Natural Conversation [70.52558242336988]
我々は,不関心や混乱の兆候を検出することを目的として,言語的および非言語的手がかりを精査することにより,ダイアディック的相互作用における係り合いを予測することに焦点を当てた。
本研究では,カジュアルなダイアディック会話に携わる34人の参加者を対象に,各会話の最後に自己報告されたエンゲージメント評価を行うデータセットを収集する。
大規模言語モデル(LLMs)を用いた新たな融合戦略を導入し,複数行動モダリティをマルチモーダル・トランスクリプトに統合する。
論文 参考訳(メタデータ) (2024-09-13T18:28:12Z) - Interactive Agents: Simulating Counselor-Client Psychological Counseling via Role-Playing LLM-to-LLM Interactions [12.455050661682051]
本稿では,カウンセラーとクライアントの相互作用をシミュレートするためのロールプレイングを通じて,2つの大きな言語モデル(LLM)を利用するフレームワークを提案する。
我々のフレームワークは2つのLCMで構成され、1つは特定の実生活のユーザープロファイルを備えたクライアントとして機能し、もう1つは経験豊富なカウンセラーとして機能する。
論文 参考訳(メタデータ) (2024-08-28T13:29:59Z) - Large Language Models for Base Station Siting: Intelligent Deployment based on Prompt or Agent [62.16747639440893]
大規模言語モデル(LLM)とその関連技術は、特に迅速な工学とエージェント工学の領域において進歩している。
このアプローチは、人間の経験と知識をこれらの洗練されたLLMに注入するために、巧妙なプロンプトの戦略的利用を必要とする。
この統合は、サービスとしての人工知能(AI)と、より容易なAIの将来のパラダイムを表している。
論文 参考訳(メタデータ) (2024-08-07T08:43:32Z) - Roleplay-doh: Enabling Domain-Experts to Create LLM-simulated Patients via Eliciting and Adhering to Principles [58.82161879559716]
ドメインエキスパートから定性的なフィードバックを引き出す新しい人間-LLMコラボレーションパイプラインであるRoleplay-dohを開発した。
このパイプラインを適用して、シニアメンタルヘルスサポーターが、シミュレートされた実践パートナのためにカスタマイズされたAI患者を作成できるようにします。
論文 参考訳(メタデータ) (2024-07-01T00:43:02Z) - VR-GPT: Visual Language Model for Intelligent Virtual Reality Applications [2.5022287664959446]
本研究では,VR環境における視覚言語モデルを用いたユーザインタラクションとタスク効率向上のための先駆的アプローチを提案する。
本システムは,視覚的テキスト命令に頼ることなく,自然言語処理によるリアルタイム・直感的なユーザインタラクションを支援する。
論文 参考訳(メタデータ) (2024-05-19T12:56:00Z) - Building Emotional Support Chatbots in the Era of LLMs [64.06811786616471]
我々は,Large Language Models (LLMs) の計算能力で人間の洞察を合成する革新的な方法論を導入する。
また,ChatGPTの文脈内学習の可能性を利用して,ExTESと呼ばれる感情支援対話データセットを生成する。
次に、LLaMAモデルに高度なチューニング手法を展開し、多様なトレーニング戦略の影響を検証し、最終的に感情的支援の相互作用に細心の注意を払ってLLMを出力する。
論文 参考訳(メタデータ) (2023-08-17T10:49:18Z) - SAPIEN: Affective Virtual Agents Powered by Large Language Models [2.423280064224919]
我々は,大規模言語モデルによって駆動される高忠実度仮想エージェントのためのプラットフォームであるSAPIENを紹介する。
このプラットフォームでは、仮想エージェントのパーソナリティ、バックグラウンド、会話の前提をカスタマイズすることができる。
仮想会議の後、ユーザーは会話を分析し、コミュニケーションスキルに対して実行可能なフィードバックを受け取ることができる。
論文 参考訳(メタデータ) (2023-08-06T05:13:16Z) - SPA: Verbal Interactions between Agents and Avatars in Shared Virtual
Environments using Propositional Planning [61.335252950832256]
SPA(Sense-Plan-Ask)は、仮想的な仮想環境において、仮想的な人間のようなエージェントとユーザアバターの間の言語的対話を生成する。
提案アルゴリズムは実行時コストを小さくし,自然言語通信を利用せずにエージェントよりも効率的に目標を達成できることが判明した。
論文 参考訳(メタデータ) (2020-02-08T23:15:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。