論文の概要: Virtual Agents for Alcohol Use Counseling: Exploring LLM-Powered Motivational Interviewing
- arxiv url: http://arxiv.org/abs/2407.08095v1
- Date: Wed, 10 Jul 2024 23:50:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-12 21:19:34.306572
- Title: Virtual Agents for Alcohol Use Counseling: Exploring LLM-Powered Motivational Interviewing
- Title(参考訳): アルコール使用カウンセリングのための仮想エージェント:LCMを利用したモチベーション・インタビューの探索
- Authors: Ian Steenstra, Farnaz Nouraei, Mehdi Arjmand, Timothy W. Bickmore,
- Abstract要約: アルコール使用カウンセリングのためのモチベーション面接(MI)を行う仮想カウンセラーを開発した。
当社のアプローチでは,迅速なエンジニアリングと統合をユーザフレンドリな仮想プラットフォームに統合し,現実的で共感的なインタラクションを促進する。
- 参考スコア(独自算出の注目度): 7.899257236779216
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a novel application of large language models (LLMs) in developing a virtual counselor capable of conducting motivational interviewing (MI) for alcohol use counseling. Access to effective counseling remains limited, particularly for substance abuse, and virtual agents offer a promising solution by leveraging LLM capabilities to simulate nuanced communication techniques inherent in MI. Our approach combines prompt engineering and integration into a user-friendly virtual platform to facilitate realistic, empathetic interactions. We evaluate the effectiveness of our virtual agent through a series of studies focusing on replicating MI techniques and human counselor dialog. Initial findings suggest that our LLM-powered virtual agent matches human counselors' empathetic and adaptive conversational skills, presenting a significant step forward in virtual health counseling and providing insights into the design and implementation of LLM-based therapeutic interactions.
- Abstract(参考訳): アルコール使用カウンセリングのためのモチベーション面接(MI)を行う仮想カウンセラーの開発において,大規模言語モデル(LLM)の新たな適用法を提案する。
効果的なカウンセリングへのアクセスは、特に薬物乱用のために制限されており、仮想エージェントは、MIに固有のニュアンス通信技術をシミュレートするためにLLM機能を活用することで、有望なソリューションを提供する。
当社のアプローチでは,迅速なエンジニアリングと統合をユーザフレンドリな仮想プラットフォームに統合し,現実的で共感的なインタラクションを促進する。
我々はMI手法の複製と人間カウンセラーダイアログに焦点をあてた一連の研究を通じて,仮想エージェントの有効性を評価する。
最初の発見は、LLMを利用した仮想エージェントは、人間のカウンセラーの共感的かつ適応的な会話スキルと一致し、バーチャルヘルスカウンセリングにおいて大きな進歩を示し、LLMベースの治療相互作用の設計と実装に関する洞察を提供することを示唆している。
関連論文リスト
- Roleplay-doh: Enabling Domain-Experts to Create LLM-simulated Patients via Eliciting and Adhering to Principles [58.82161879559716]
ドメインエキスパートから定性的なフィードバックを引き出す新しい人間-LLMコラボレーションパイプラインであるRoleplay-dohを開発した。
このパイプラインを適用して、シニアメンタルヘルスサポーターが、シミュレートされた実践パートナのためにカスタマイズされたAI患者を作成できるようにします。
論文 参考訳(メタデータ) (2024-07-01T00:43:02Z) - Facilitating Multi-Role and Multi-Behavior Collaboration of Large Language Models for Online Job Seeking and Recruiting [51.54907796704785]
既存の手法は履歴書とジョブ記述の潜在意味論をモデル化し、それらの間に一致する関数を学習することに依存している。
大規模言語モデル (LLM) の強力なロールプレイング能力に触発されて, LLM によるインタビュアーと候補者のモックインタビュープロセスを導入することを提案する。
そこで我々は,モックインタビュー生成とハンドシェイクプロトコルにおける双方向評価という2つのモジュールにパーソナライズされたマッチングプロセスを分割する,新しいフレームワークであるMockLLMを提案する。
論文 参考訳(メタデータ) (2024-05-28T12:23:16Z) - VR-GPT: Visual Language Model for Intelligent Virtual Reality Applications [2.5022287664959446]
本研究では,VR環境における視覚言語モデルを用いたユーザインタラクションとタスク効率向上のための先駆的アプローチを提案する。
本システムは,視覚的テキスト命令に頼ることなく,自然言語処理によるリアルタイム・直感的なユーザインタラクションを支援する。
論文 参考訳(メタデータ) (2024-05-19T12:56:00Z) - Evaluating the Efficacy of Interactive Language Therapy Based on LLM for
High-Functioning Autistic Adolescent Psychological Counseling [1.1780706927049207]
本研究では,高機能自閉症青年に対する対話型言語治療におけるLarge Language Models(LLMs)の有効性について検討した。
LLMは、従来の心理学的カウンセリング手法を強化する新しい機会を提供する。
論文 参考訳(メタデータ) (2023-11-12T07:55:39Z) - Zero-Shot Goal-Directed Dialogue via RL on Imagined Conversations [70.7884839812069]
大規模言語モデル(LLM)は、多くの自然言語タスクに対する強力で一般的な解決策として登場した。
しかしながら、言語生成の最も重要なアプリケーションの多くは対話的であり、エージェントは望ましい結果に達するために相手と話し合わなければならない。
本研究では,そのような目標指向対話に対して,RLでLLMを適応させる新しい手法について検討する。
論文 参考訳(メタデータ) (2023-11-09T18:45:16Z) - LLM-Based Agent Society Investigation: Collaboration and Confrontation
in Avalon Gameplay [57.202649879872624]
Avalonのゲームプレイにシームレスに適応する新しいフレームワークを提案する。
提案するフレームワークの中核は,エージェント間の効率的な通信と対話を可能にするマルチエージェントシステムである。
本研究は,適応的かつインテリジェントなエージェントを生成する上で,我々のフレームワークの有効性を示すものである。
論文 参考訳(メタデータ) (2023-10-23T14:35:26Z) - Building Emotional Support Chatbots in the Era of LLMs [64.06811786616471]
我々は,Large Language Models (LLMs) の計算能力で人間の洞察を合成する革新的な方法論を導入する。
また,ChatGPTの文脈内学習の可能性を利用して,ExTESと呼ばれる感情支援対話データセットを生成する。
次に、LLaMAモデルに高度なチューニング手法を展開し、多様なトレーニング戦略の影響を検証し、最終的に感情的支援の相互作用に細心の注意を払ってLLMを出力する。
論文 参考訳(メタデータ) (2023-08-17T10:49:18Z) - SAPIEN: Affective Virtual Agents Powered by Large Language Models [2.423280064224919]
我々は,大規模言語モデルによって駆動される高忠実度仮想エージェントのためのプラットフォームであるSAPIENを紹介する。
このプラットフォームでは、仮想エージェントのパーソナリティ、バックグラウンド、会話の前提をカスタマイズすることができる。
仮想会議の後、ユーザーは会話を分析し、コミュニケーションスキルに対して実行可能なフィードバックを受け取ることができる。
論文 参考訳(メタデータ) (2023-08-06T05:13:16Z) - SPA: Verbal Interactions between Agents and Avatars in Shared Virtual
Environments using Propositional Planning [61.335252950832256]
SPA(Sense-Plan-Ask)は、仮想的な仮想環境において、仮想的な人間のようなエージェントとユーザアバターの間の言語的対話を生成する。
提案アルゴリズムは実行時コストを小さくし,自然言語通信を利用せずにエージェントよりも効率的に目標を達成できることが判明した。
論文 参考訳(メタデータ) (2020-02-08T23:15:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。