論文の概要: Integrating Personality into Digital Humans: A Review of LLM-Driven Approaches for Virtual Reality
- arxiv url: http://arxiv.org/abs/2503.16457v1
- Date: Sat, 22 Feb 2025 01:33:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-30 09:25:14.359966
- Title: Integrating Personality into Digital Humans: A Review of LLM-Driven Approaches for Virtual Reality
- Title(参考訳): デジタル人間へのパーソナリティの融合 : バーチャルリアリティのためのLCM駆動アプローチの概観
- Authors: Iago Alves Brito, Julia Soares Dollis, Fernanda Bufon Färber, Pedro Schindler Freire Brasil Ribeiro, Rafael Teixeira Sousa, Arlindo Rodrigues Galvão Filho,
- Abstract要約: 大型言語モデル(LLM)をバーチャルリアリティ(VR)環境に統合することで、より没入的でインタラクティブなデジタル人間を作るための新たな経路が開かれた。
本稿では,デジタル人間によるニュアンスな人格特性の活用を可能にする手法を包括的に検討し,ゼロショット,少数ショット,微調整などのアプローチを探求する。
計算要求、レイテンシの問題、マルチモーダルインタラクションのための標準化された評価フレームワークの欠如など、LCM駆動のパーソナリティ特性をVRに統合するという課題を強調している。
- 参考スコア(独自算出の注目度): 37.69303106863453
- License:
- Abstract: The integration of large language models (LLMs) into virtual reality (VR) environments has opened new pathways for creating more immersive and interactive digital humans. By leveraging the generative capabilities of LLMs alongside multimodal outputs such as facial expressions and gestures, virtual agents can simulate human-like personalities and emotions, fostering richer and more engaging user experiences. This paper provides a comprehensive review of methods for enabling digital humans to adopt nuanced personality traits, exploring approaches such as zero-shot, few-shot, and fine-tuning. Additionally, it highlights the challenges of integrating LLM-driven personality traits into VR, including computational demands, latency issues, and the lack of standardized evaluation frameworks for multimodal interactions. By addressing these gaps, this work lays a foundation for advancing applications in education, therapy, and gaming, while fostering interdisciplinary collaboration to redefine human-computer interaction in VR.
- Abstract(参考訳): 大型言語モデル(LLM)をバーチャルリアリティ(VR)環境に統合することで、より没入的でインタラクティブなデジタル人間を作るための新たな経路が開かれた。
LLMの生成能力と表情やジェスチャーなどのマルチモーダルなアウトプットを活用することで、仮想エージェントは人間のような個性や感情をシミュレートし、よりリッチで魅力的なユーザエクスペリエンスを育むことができる。
本稿では,デジタル人間によるニュアンスな人格特性の活用を可能にする手法を包括的に検討し,ゼロショット,少数ショット,微調整などのアプローチを探求する。
さらに、計算要求、レイテンシの問題、マルチモーダルインタラクションのための標準化された評価フレームワークの欠如など、LLM駆動のパーソナリティ特性をVRに統合するという課題も強調されている。
これらのギャップに対処することで、この研究は教育、セラピー、ゲームにおける応用の進展の基盤となり、同時にVRにおける人間とコンピュータの相互作用を再定義するための学際的なコラボレーションを促進する。
関連論文リスト
- HumanVBench: Exploring Human-Centric Video Understanding Capabilities of MLLMs with Synthetic Benchmark Data [55.739633494946204]
我々は,ビデオMLLMの評価において,ギャップを埋めるために巧みに構築された,革新的なベンチマークであるHumanVBenchを紹介する。
HumanVBenchは、内的感情と外的表現、静的、動的、基本的、複雑にまたがる2つの主要な側面と、単一モーダルとクロスモーダルという2つの側面を慎重に検討する16のタスクで構成されている。
22のSOTAビデオMLLMの総合評価では、特にクロスモーダルおよび感情知覚において、現在のパフォーマンスに顕著な制限が示される。
論文 参考訳(メタデータ) (2024-12-23T13:45:56Z) - Social Conjuring: Multi-User Runtime Collaboration with AI in Building Virtual 3D Worlds [3.5152339192019113]
Social Conjurerは、AIによる動的3Dシーンの共同作成のためのフレームワークである。
本稿では,AIモデルを3次元コンテンツ生成に組み込んだヒューマン中心インタフェースの設計における意味について述べる。
論文 参考訳(メタデータ) (2024-09-30T23:02:51Z) - Multimodal Fusion with LLMs for Engagement Prediction in Natural Conversation [70.52558242336988]
我々は,不関心や混乱の兆候を検出することを目的として,言語的および非言語的手がかりを精査することにより,ダイアディック的相互作用における係り合いを予測することに焦点を当てた。
本研究では,カジュアルなダイアディック会話に携わる34人の参加者を対象に,各会話の最後に自己報告されたエンゲージメント評価を行うデータセットを収集する。
大規模言語モデル(LLMs)を用いた新たな融合戦略を導入し,複数行動モダリティをマルチモーダル・トランスクリプトに統合する。
論文 参考訳(メタデータ) (2024-09-13T18:28:12Z) - PersonalityScanner: Exploring the Validity of Personality Assessment Based on Multimodal Signals in Virtual Reality [44.15145632980038]
PersonalityScannerは、認知プロセスを刺激し、日々の行動をシミュレートするVRシミュレータである。
ビデオ、音声、テキスト、アイトラッキング、顔のマイクロ圧縮、ポーズ、深度データ、ログ、慣性測定ユニットを含む10つのモードの同期マルチモーダルデータセットを収集する。
論文 参考訳(メタデータ) (2024-07-29T06:17:41Z) - PersLLM: A Personified Training Approach for Large Language Models [66.16513246245401]
社会実践, 一貫性, 動的発達という, 心理学に根ざした個性の原則を統合したPersLLMを提案する。
モデルパラメータに直接パーソナリティ特性を組み込み、誘導に対するモデルの抵抗性を高め、一貫性を高め、パーソナリティの動的進化を支援する。
論文 参考訳(メタデータ) (2024-07-17T08:13:22Z) - Virtual Agents for Alcohol Use Counseling: Exploring LLM-Powered Motivational Interviewing [7.899257236779216]
アルコール使用カウンセリングのためのモチベーション面接(MI)を行う仮想カウンセラーを開発した。
当社のアプローチでは,迅速なエンジニアリングと統合をユーザフレンドリな仮想プラットフォームに統合し,現実的で共感的なインタラクションを促進する。
論文 参考訳(メタデータ) (2024-07-10T23:50:08Z) - Human-Aware Vision-and-Language Navigation: Bridging Simulation to Reality with Dynamic Human Interactions [69.9980759344628]
Vision-and-Language Navigation (VLN)は、人間の指示に基づいてナビゲートするエンボディエージェントを開発することを目的としている。
本稿では,人間の動的活動を取り入れ,従来のVLNを拡張したHuman-Aware Vision-and-Language Navigation (HA-VLN)を紹介する。
本稿では, クロスモーダル融合と多種多様なトレーニング戦略を利用して, エキスパート・スーパーモーダル・クロスモーダル (VLN-CM) と非エキスパート・スーパーモーダル・ディシジョン・トランスフォーマー (VLN-DT) のエージェントを提示する。
論文 参考訳(メタデータ) (2024-06-27T15:01:42Z) - VR-GS: A Physical Dynamics-Aware Interactive Gaussian Splatting System in Virtual Reality [39.53150683721031]
提案するVR-GSシステムは,人間中心の3Dコンテンツインタラクションにおける飛躍的な進歩を示す。
私たちの仮想現実システムのコンポーネントは、高い効率と有効性のために設計されています。
論文 参考訳(メタデータ) (2024-01-30T01:28:36Z) - On the Emergence of Symmetrical Reality [51.21203247240322]
物理仮想アマルガメーションの様々な形態を包含した統一表現を提供する対称現実感フレームワークを導入する。
我々は、対称現実の潜在的な応用を示すAI駆動型アクティブアシストサービスの例を提案する。
論文 参考訳(メタデータ) (2024-01-26T16:09:39Z) - Mobile Edge Computing and AI Enabled Web3 Metaverse over 6G Wireless
Communications: A Deep Reinforcement Learning Approach [10.47302625959368]
インタラクティブで没入的なソーシャル化体験は、Metaverseの約束の1つだ。
メタバースにおけるスムーズでシームレスで没入的な社会化体験に必要な計算は過大評価される。
本稿では,マルチチャネル無線ネットワーク上でのマルチユーザ・ソーシャル化において蓄積された経験を蓄積するための新しいQoSモデルを提案する。
論文 参考訳(メタデータ) (2023-12-11T10:49:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。