論文の概要: System Report for CCL24-Eval Task 7: Multi-Error Modeling and Fluency-Targeted Pre-training for Chinese Essay Evaluation
- arxiv url: http://arxiv.org/abs/2407.08206v1
- Date: Thu, 11 Jul 2024 06:17:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-12 18:48:48.797828
- Title: System Report for CCL24-Eval Task 7: Multi-Error Modeling and Fluency-Targeted Pre-training for Chinese Essay Evaluation
- Title(参考訳): CCL24-Eval Task 7のシステム報告:中国語評価のためのマルチエラーモデリングと周波数目標事前学習
- Authors: Jingshen Zhang, Xiangyu Yang, Xinkai Su, Xinglu Chen, Tianyou Huang, Xinying Qiu,
- Abstract要約: 我々は,中国語学習者4Wコーパス上で,二分分類モデルと訓練された粗粒度モデルを用いて,細粒度エラーの予測を最適化した。
トラック2では、文毎に複数のエラー型を持つ擬似データセットを構築することにより、性能を向上した。
1位となったトラック3では,事前学習のための逆翻訳によって流速評価の擬似データを生成し,NSPベースの戦略を用いた。
- 参考スコア(独自算出の注目度): 1.8856984887896766
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This system report presents our approaches and results for the Chinese Essay Fluency Evaluation (CEFE) task at CCL-2024. For Track 1, we optimized predictions for challenging fine-grained error types using binary classification models and trained coarse-grained models on the Chinese Learner 4W corpus. In Track 2, we enhanced performance by constructing a pseudo-dataset with multiple error types per sentence. For Track 3, where we achieved first place, we generated fluency-rated pseudo-data via back-translation for pre-training and used an NSP-based strategy with Symmetric Cross Entropy loss to capture context and mitigate long dependencies. Our methods effectively address key challenges in Chinese Essay Fluency Evaluation.
- Abstract(参考訳): 本報告では,CCL-2024におけるCEFEタスクに対する我々のアプローチと結果について述べる。
トラック1では,中国語Learner 4Wコーパス上で,バイナリ分類モデルと訓練された粗粒度モデルを用いて,微粒度エラーの予測を最適化した。
トラック2では、文毎に複数のエラー型を持つ擬似データセットを構築することにより、性能を向上した。
1位となったトラック3では,事前学習のための逆変換による流速評価擬似データを生成し,Symmetric Cross Entropy損失を用いたNSPベースの戦略を用いて,コンテキストのキャプチャと長期依存性の軽減を行った。
提案手法は,中国におけるEssay Fluency Evaluationの課題に効果的に対処する。
関連論文リスト
- UZH_CLyp at SemEval-2023 Task 9: Head-First Fine-Tuning and ChatGPT Data
Generation for Cross-Lingual Learning in Tweet Intimacy Prediction [3.1798318618973362]
本稿では,SemEval 2023 Task 9「Multilingual Tweet Intimacy Analysis」に対するUZH_CLypの提出について述べる。
公式なピアソン相関回帰評価尺度により,全10言語で2番目に高い結果を得た。
論文 参考訳(メタデータ) (2023-03-02T12:18:53Z) - Ensemble Transfer Learning for Multilingual Coreference Resolution [60.409789753164944]
非英語で作業する場合に頻繁に発生する問題は、注釈付きトレーニングデータの不足である。
我々は,様々なトランスファー学習技術を組み合わせた,シンプルだが効果的なアンサンブルベースのフレームワークを設計する。
また、ウィキペディアアンカーテキストを利用して、コア参照解決モデルをブートストラップする低コストのTL手法を提案する。
論文 参考訳(メタデータ) (2023-01-22T18:22:55Z) - Few-shot Text Classification with Dual Contrastive Consistency [31.141350717029358]
本稿では,事前学習した言語モデルを用いて,数ショットのテキスト分類を行う方法について検討する。
ラベル付きデータが少ない場合の教師付きコントラスト学習と、ラベルなしデータの一貫性と規則化を採用する。
論文 参考訳(メタデータ) (2022-09-29T19:26:23Z) - MuCGEC: a Multi-Reference Multi-Source Evaluation Dataset for Chinese
Grammatical Error Correction [51.3754092853434]
MuCGECは中国語文法誤り訂正(CGEC)のためのマルチ参照評価データセットである
3つの中国語-as-a-Second-Language(CSL)学習資料から収集された7,063文からなる。
各文は3つのアノテータによって修正され、その修正は専門家によって慎重にレビューされ、1文あたりの参照数は2.3である。
論文 参考訳(メタデータ) (2022-04-23T05:20:38Z) - Modelling Latent Translations for Cross-Lingual Transfer [47.61502999819699]
従来のパイプラインの2つのステップ(翻訳と分類)を1つのモデルに統合する新しい手法を提案する。
我々は,多言語NLUタスクにおける新しい潜時翻訳モデルの評価を行った。
ゼロショットと数ショットの学習設定の両方で、平均2.7の精度ポイントのゲインを報告します。
論文 参考訳(メタデータ) (2021-07-23T17:11:27Z) - Exploration and Exploitation: Two Ways to Improve Chinese Spelling
Correction Models [51.744357472072416]
本稿では,モデルの弱点を継続的に識別し,より価値の高いトレーニングインスタンスを生成する手法を提案する。
実験結果から, 事前学習戦略と組み合わさって, 複数のCSCモデルの一般化とロバスト性を改善することができることがわかった。
論文 参考訳(メタデータ) (2021-05-31T09:17:33Z) - Supervised Contrastive Learning for Pre-trained Language Model
Fine-tuning [23.00300794016583]
最先端の自然言語理解分類モデルは2段階に従う。
微調整段階に対する教師付きコントラスト学習(SCL)の目的を提案する。
提案した微調整目的は、微調整訓練データにおいて、異なるレベルのノイズに対してより堅牢なモデルに導かれる。
論文 参考訳(メタデータ) (2020-11-03T01:10:39Z) - Unsupervised Cross-lingual Adaptation for Sequence Tagging and Beyond [58.80417796087894]
多言語事前訓練言語モデル(mPTLM)による言語間適応は、主にゼロショットアプローチと翻訳に基づくアプローチの2行からなる。
本稿では、ゼロショットアプローチと翻訳に基づくアプローチを統合し、適応性能を向上させるための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-10-23T13:47:01Z) - Mixed-Lingual Pre-training for Cross-lingual Summarization [54.4823498438831]
言語間の要約は、ソース言語の記事に対する対象言語の要約を作成することを目的としている。
本稿では,翻訳のような言語間タスクと,マスク付き言語モデルのようなモノリンガルタスクの両方を活用する混合言語事前学習に基づくソリューションを提案する。
本モデルでは,2.82(中国語)と1.15(中国語,英語)のROUGE-1スコアを最先端の結果に対して改善する。
論文 参考訳(メタデータ) (2020-10-18T00:21:53Z) - Revisiting LSTM Networks for Semi-Supervised Text Classification via
Mixed Objective Function [106.69643619725652]
我々は,単純なBiLSTMモデルであっても,クロスエントロピー損失でトレーニングした場合に,競争的な結果が得られるようなトレーニング戦略を開発する。
いくつかのベンチマークデータセット上で,テキスト分類タスクの最先端結果について報告する。
論文 参考訳(メタデータ) (2020-09-08T21:55:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。