Dynamically assisted pair production enhancement by combined multiple potentials
- URL: http://arxiv.org/abs/2407.08355v1
- Date: Thu, 11 Jul 2024 10:07:12 GMT
- Title: Dynamically assisted pair production enhancement by combined multiple potentials
- Authors: Lie-Juan Li, Li Wang, Melike Mohamedsedik, Li-Na Hu, Bai-Song Xie,
- Abstract summary: We propose a new Sauter-like field model with multiple potentials consisting of a deep slow-varying and some shallow fast-varying potentials.
The dynamically assisted Sauter-Schwinger effect on the pair production is found by using the computational quantum field theory.
- Score: 2.975389003315806
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a new Sauter-like field model with combinatorial multiple potentials consisting of a deep slow-varying and some shallow fast-varying potentials. The dynamically assisted Sauter-Schwinger effect on the pair production is found by using the computational quantum field theory. The enhanced pair production is found to be significant at about one order increasing for multiple potentials rather than single potential. In case of dominated by Schwinger mechanism, the obvious time effect leads to electrons concentrating at the two edges of the potential, meanwhile, the momentum locates at the zero nearby. In contrary, however, for the multiphoton processes, the pair generation makes the electrons distributing outside the potential and the momentum appearing multiple peaks far away from zero and evenly evolving toward a step-like structure. An interesting finding is that the particles of pair produced in the alternating potential has a quasi-monoenergetic structure compared to the oscillating potential well or/and potential barrier, which is helpful to achieve the high quality positron source.
Related papers
- Dynamical observation of non-trivial doublon formation using a quantum
computer [0.0]
Dynamical formation of doublons or onsite repulsively bound pairs of particles on a lattice is non-trivial.
We show the signatures of doublon formation in a quantum computing experiment by simulating the continuous time quantum walk.
arXiv Detail & Related papers (2024-03-04T17:16:15Z) - Floquet engineering of many-body states by the ponderomotive potential [1.2691047660244337]
ponderomotive force is an effective static force that a particle feels in an oscillating field.
We show that the ponderomotive potential from the incident light may be used to induce exciton condensates in semiconductors.
arXiv Detail & Related papers (2023-12-08T08:18:14Z) - Phonon-assisted coherent transport of excitations in Rydberg-dressed
atom arrays [0.0]
Polarons arise from the self-trapping interaction between electrons and lattice distortions in a solid.
We present a microscopic model that exhibits a diverse range of dynamic behavior, arising from the intricate interplay between excitation-phonon coupling terms.
This work contributes to the understanding of polaron dynamics with their potential applications in coherent quantum transport.
arXiv Detail & Related papers (2023-07-10T10:40:47Z) - Multielectron dots provide faster Rabi oscillations when the core
electrons are strongly confined [0.0]
We study one- and three-electron quantum dots in silicon/silicon-germanium heterostructures.
Our calculations show that anharmonicity of the confinement potential plays an important role.
These findings have important implications for the design of multielectron Si/SiGe quantum dot qubits.
arXiv Detail & Related papers (2023-03-06T08:11:16Z) - Quantum interaction of sub-relativistic aloof electrons with mesoscopic
samples [91.3755431537592]
Relativistic electrons experience very slight wave packet distortion and negligible momentum recoil when interacting with nanometer-sized samples.
Modelling fast electrons as classical point-charges provides extremely accurate theoretical predictions of energy-loss spectra.
arXiv Detail & Related papers (2022-11-14T15:22:37Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Driving Force and Nonequilibrium Vibronic Dynamics in Charge Separation
of Strongly Bound Electron-Hole Pairs [59.94347858883343]
We study the dynamics of charge separation in one, two and three-dimensional donor-acceptor networks.
This allows us to identify the precise conditions in which underdamped vibrational motion induces efficient long-range charge separation.
arXiv Detail & Related papers (2022-05-11T17:51:21Z) - Enhanced coupling of electron and nuclear spins by quantum tunneling
resonances [0.0]
We propose a controllable mechanism to enhance this transfer rate.
We analyze the spin dynamics of helium-3 atoms with hot, optically-excited potassium atoms.
We find a resonant enhancement of the spin-exchange cross section by up to six orders of magnitude and two orders of magnitude enhancement for the thermally averaged, polarization rate-coefficient.
arXiv Detail & Related papers (2022-01-04T17:33:02Z) - Relativistic aspects of orbital and magnetic anisotropies in the
chemical bonding and structure of lanthanide molecules [60.17174832243075]
We study the electronic and ro-vibrational states of heavy homonuclear lanthanide Er2 and Tm2 molecules by applying state-of-the-art relativistic methods.
We were able to obtain reliable spin-orbit and correlation-induced splittings between the 91 Er2 and 36 Tm2 electronic potentials dissociating to two ground-state atoms.
arXiv Detail & Related papers (2021-07-06T15:34:00Z) - Entanglement generation via power-of-SWAP operations between dynamic
electron-spin qubits [62.997667081978825]
Surface acoustic waves (SAWs) can create moving quantum dots in piezoelectric materials.
We show how electron-spin qubits located on dynamic quantum dots can be entangled.
arXiv Detail & Related papers (2020-01-15T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.