Quantized area of the Schwarzschild black hole: A non-hermitian perspective
- URL: http://arxiv.org/abs/2407.08358v1
- Date: Thu, 11 Jul 2024 10:10:10 GMT
- Title: Quantized area of the Schwarzschild black hole: A non-hermitian perspective
- Authors: Bijan Bagchi, Aritra Ghosh, Sauvik Sen,
- Abstract summary: We consider the unconstrained reduced Hamiltonian which is directly expressed in terms of the Schwarzschild mass.
We derive novel expressions for the corresponding Hawking temperature and black hole entropy.
- Score: 7.00493617363289
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: In this work our aim is to link Bekenstein's quantized form of the area of the event horizon to the Hamiltonian of the non-Hermitian Swanson oscillator which is known to be parity-time-symmetric. We achieve this by employing a similarity transformation that maps the non-Hermitian quantum system to a scaled harmonics oscillator. To this end, we consider the unconstrained reduced Hamiltonian which is directly expressed in terms of the Schwarzschild mass and implies a periodic character for the conjugate momentum (which represents the asymptotic time coordinate), the period being the inverse Hawking temperature. This leads to the quantization of the event-horizon area in terms of the harmonic oscillator levels. Next, in the framework of the Swanson oscillator model, we proceed to derive novel expressions for the corresponding Hawking temperature and black hole entropy.
Related papers
- Integral quantization based on the Heisenberg-Weyl group [39.58317527488534]
We develop a framework of integral quantization applied to the motion of spinless particles in the four-dimensional Minkowski spacetime.
The proposed scheme is based on coherent states generated by the action of the Heisenberg-Weyl group.
A direct application of our model, including a computation of transition amplitudes between states characterized by fixed positions and momenta, is postponed to a forthcoming article.
arXiv Detail & Related papers (2024-10-31T14:36:38Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Quantum vibrational mode in a cavity confining a massless spinor field [91.3755431537592]
We analyse the reaction of a massless (1+1)-dimensional spinor field to the harmonic motion of one cavity wall.
We demonstrate that the system is able to convert bosons into fermion pairs at the lowest perturbative order.
arXiv Detail & Related papers (2022-09-12T08:21:12Z) - Non-Equilibrating a Black Hole with Inhomogeneous Quantum Quench [0.0]
We study non-equilibrium processes in conformal field theory after quantum quenches starting from the thermal equilibrium (Gibbs) state.
Our quench protocol uses spatially inhomogeneous Hamiltonians, the Mobius and sine-square-deformed (SSD) Hamiltonians.
arXiv Detail & Related papers (2021-12-29T03:49:07Z) - Fingerprints of the quantum space-time in time-dependent quantum
mechanics: An emergent geometric phase [0.9176056742068814]
We show the emergence of Berry phase in a forced harmonic oscillator system placed in the quantum space-time of Moyal type.
Adiabatic evolution over time-period $mathcalT$ is studied in Heisenberg picture to compute the expression of geometric phase-shift.
arXiv Detail & Related papers (2021-10-10T08:05:18Z) - Algebraic Compression of Quantum Circuits for Hamiltonian Evolution [52.77024349608834]
Unitary evolution under a time dependent Hamiltonian is a key component of simulation on quantum hardware.
We present an algorithm that compresses the Trotter steps into a single block of quantum gates.
This results in a fixed depth time evolution for certain classes of Hamiltonians.
arXiv Detail & Related papers (2021-08-06T19:38:01Z) - Physics of the Inverted Harmonic Oscillator: From the lowest Landau
level to event horizons [0.0]
We present the IHO Hamiltonian as a paradigm to understand the quantum mechanics of scattering and time-decay in a diverse set of physical systems.
As one of the generators of area preserving transformations, the IHO Hamiltonian can be studied as a dilatation generator, squeeze generator, a Lorentz boost generator, or a scattering potential.
arXiv Detail & Related papers (2020-12-17T19:00:13Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z) - From stochastic spin chains to quantum Kardar-Parisi-Zhang dynamics [68.8204255655161]
We introduce the asymmetric extension of the Quantum Symmetric Simple Exclusion Process.
We show that the time-integrated current of fermions defines a height field which exhibits a quantum non-linear dynamics.
arXiv Detail & Related papers (2020-01-13T14:30:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.