論文の概要: Semi-Supervised Object Detection: A Survey on Progress from CNN to Transformer
- arxiv url: http://arxiv.org/abs/2407.08460v1
- Date: Thu, 11 Jul 2024 12:58:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-12 17:29:40.216924
- Title: Semi-Supervised Object Detection: A Survey on Progress from CNN to Transformer
- Title(参考訳): 半監督対象検出:CNNから変圧器への進展に関する調査
- Authors: Tahira Shehzadi, Ifza, Didier Stricker, Muhammad Zeshan Afzal,
- Abstract要約: 本稿では,物体検出のための半教師付き学習における27の最先端開発について概説する。
データ拡張テクニック、擬似ラベル戦略、一貫性の正則化、敵の訓練方法などをカバーする。
我々は,既存の課題を克服し,物体検出のための半教師あり学習における新たな方向性を探るため,さらなる研究の関心を喚起することを目的としている。
- 参考スコア(独自算出の注目度): 12.042768320132694
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The impressive advancements in semi-supervised learning have driven researchers to explore its potential in object detection tasks within the field of computer vision. Semi-Supervised Object Detection (SSOD) leverages a combination of a small labeled dataset and a larger, unlabeled dataset. This approach effectively reduces the dependence on large labeled datasets, which are often expensive and time-consuming to obtain. Initially, SSOD models encountered challenges in effectively leveraging unlabeled data and managing noise in generated pseudo-labels for unlabeled data. However, numerous recent advancements have addressed these issues, resulting in substantial improvements in SSOD performance. This paper presents a comprehensive review of 27 cutting-edge developments in SSOD methodologies, from Convolutional Neural Networks (CNNs) to Transformers. We delve into the core components of semi-supervised learning and its integration into object detection frameworks, covering data augmentation techniques, pseudo-labeling strategies, consistency regularization, and adversarial training methods. Furthermore, we conduct a comparative analysis of various SSOD models, evaluating their performance and architectural differences. We aim to ignite further research interest in overcoming existing challenges and exploring new directions in semi-supervised learning for object detection.
- Abstract(参考訳): 半教師付き学習の目覚ましい進歩は、コンピュータビジョンの分野における物体検出タスクの可能性を探るきっかけとなった。
Semi-Supervised Object Detection (SSOD)は、小さなラベル付きデータセットとより大きなラベルなしデータセットの組み合わせを活用する。
このアプローチは、しばしば高価で入手に時間がかかる大規模なラベル付きデータセットへの依存を効果的に減らす。
当初、SSODモデルはラベルのないデータを効果的に活用し、ラベルのないデータに対して生成された擬似ラベルのノイズを管理するという課題に直面した。
しかし、近年の多くの進歩はこれらの問題に対処し、SSODの性能を大幅に改善した。
本稿では,畳み込みニューラルネットワーク(CNN)からトランスフォーマーまで,SSOD方法論における27の最先端開発について概説する。
半教師付き学習のコアコンポーネントと、そのオブジェクト検出フレームワークへの統合、データ拡張技術、擬似ラベル戦略、一貫性の正則化、および敵の訓練方法などについて調べる。
さらに、様々なSSODモデルの比較分析を行い、その性能とアーキテクチャの違いを評価した。
我々は,既存の課題を克服し,物体検出のための半教師あり学習における新たな方向性を探るため,さらなる研究の関心を喚起することを目的としている。
関連論文リスト
- Label-Efficient 3D Object Detection For Road-Side Units [10.663986706501188]
協調的知覚は、インテリジェント・ロードサイド・ユニット(RSU)との深部情報融合による自動運転車の知覚を高める
これらの手法は、特に注釈付きRSUデータを必要とするため、実際のデプロイメントにおいて大きなハードルを生んでいる。
教師なしオブジェクト発見に基づくRSUのためのラベル効率の高いオブジェクト検出手法を考案する。
論文 参考訳(メタデータ) (2024-04-09T12:29:16Z) - Few-Shot Object Detection: Research Advances and Challenges [15.916463121997843]
Few-shot Object Detection (FSOD)は、少数の学習技術とオブジェクト検出技術を組み合わせて、注釈付きサンプルに制限のある新しいオブジェクトに迅速に適応する。
本稿では,近年のFSOD分野の進歩を概観する包括的調査を行う。
論文 参考訳(メタデータ) (2024-04-07T03:37:29Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
本稿では,LSKNetのバックボーンをDiffusionDetヘッドに統合したオブジェクト検出モデルの詳細な評価を行う。
提案手法は平均精度(MAP)を約45.7%向上させる。
この進歩は、提案された修正の有効性を強調し、航空画像解析の新しいベンチマークを設定する。
論文 参考訳(メタデータ) (2023-11-21T19:49:13Z) - Improved Region Proposal Network for Enhanced Few-Shot Object Detection [23.871860648919593]
Few-shot Object Detection (FSOD) メソッドは、古典的なオブジェクト検出手法の限界に対する解決策として登場した。
FSODトレーニング段階において,未ラベルの新規物体を正のサンプルとして検出し,利用するための半教師付きアルゴリズムを開発した。
地域提案ネットワーク(RPN)の階層的サンプリング戦略の改善により,大規模オブジェクトに対するオブジェクト検出モデルの認識が向上する。
論文 参考訳(メタデータ) (2023-08-15T02:35:59Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
ジェネリックな方法でオブジェクトを発見できるため、教師なしのオブジェクト発見は有望である。
画像から高レベルな意味的特徴を抽出する意味誘導型自己教師学習モデルを設計する。
オブジェクト領域のローカライズのための主成分分析(PCA)を導入する。
論文 参考訳(メタデータ) (2023-07-07T04:03:48Z) - Semi-supervised Object Detection: A Survey on Recent Research and
Progress [2.2398477810999817]
半教師対象検出(SSOD)は、高い研究価値と実践性のために、ますます注目されている。
本稿では,5つの側面からSSODのアプローチに関する包括的かつ最新の調査を紹介する。
論文 参考訳(メタデータ) (2023-06-25T02:54:03Z) - Salient Objects in Clutter [130.63976772770368]
本稿では,既存の正当性オブジェクト検出(SOD)データセットの重大な設計バイアスを特定し,対処する。
この設計バイアスは、既存のデータセットで評価した場合、最先端のSODモデルのパフォーマンスの飽和につながった。
我々は,新しい高品質データセットを提案し,前回のsaliencyベンチマークを更新する。
論文 参考訳(メタデータ) (2021-05-07T03:49:26Z) - Data-efficient Weakly-supervised Learning for On-line Object Detection
under Domain Shift in Robotics [24.878465999976594]
文献では、Deep Convolutional Neural Networks (DCNNs)に基づく多数のオブジェクト検出方法が提案されている。
これらの手法はロボティクスに重要な制限がある:オフラインデータのみに学習するとバイアスが発生し、新しいタスクへの適応を防ぐことができる。
本研究では,弱い教師付き学習がこれらの問題にどのように対処できるかを検討する。
論文 参考訳(メタデータ) (2020-12-28T16:36:11Z) - Progressive Object Transfer Detection [84.48927705173494]
本稿では,新しいプログレッシブオブジェクト転送検出(POTD)フレームワークを提案する。
第一に、POTDは様々なドメインの様々なオブジェクトを効果的にプログレッシブな検出手順に活用することができる。
第2に、POTDは2つの微妙な転送段階、すなわち、LSTD(low-Shot Transfer Detection)とWSTD(Weakly Supervised Transfer Detection)から構成される。
論文 参考訳(メタデータ) (2020-02-12T00:16:24Z) - Stance Detection Benchmark: How Robust Is Your Stance Detection? [65.91772010586605]
Stance Detection (StD) は、あるトピックやクレームに対する著者の姿勢を検出することを目的としている。
マルチデータセット学習環境において、さまざまなドメインの10のStDデータセットから学習するStDベンチマークを導入する。
このベンチマーク設定では、5つのデータセットに新しい最先端結果を表示することができます。
論文 参考訳(メタデータ) (2020-01-06T13:37:51Z) - SESS: Self-Ensembling Semi-Supervised 3D Object Detection [138.80825169240302]
具体的には、ラベルのない新しい未知のデータに基づくネットワークの一般化を促進するための、徹底的な摂動スキームを設計する。
我々のSESSは、50%のラベル付きデータを用いて、最先端の完全教師付き手法と比較して、競争性能を達成している。
論文 参考訳(メタデータ) (2019-12-26T08:48:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。