Surpassing Cosine Similarity for Multidimensional Comparisons: Dimension Insensitive Euclidean Metric (DIEM)
- URL: http://arxiv.org/abs/2407.08623v2
- Date: Mon, 29 Jul 2024 15:49:29 GMT
- Title: Surpassing Cosine Similarity for Multidimensional Comparisons: Dimension Insensitive Euclidean Metric (DIEM)
- Authors: Federico Tessari, Neville Hogan,
- Abstract summary: We introduce the Dimension Insensitive Euclidean Metric (DIEM) which demonstrates superior robustness and generalizability across dimensions.
DIEM maintains consistent variability and eliminates the biases observed in traditional metrics, making it a reliable tool for high-dimensional comparisons.
This novel metric has the potential to replace cosine similarity, providing a more accurate and insightful method to analyze multidimensional data in fields ranging from neuromotor control to machine and deep learning.
- Score: 3.812115031347965
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The advancement in computational power and hardware efficiency enabled the tackling of increasingly complex and high-dimensional problems. While artificial intelligence (AI) achieved remarkable results, the interpretability of high-dimensional solutions remains challenging. A critical issue is the comparison of multidimensional quantities, which is essential in techniques like Principal Component Analysis (PCA), or k-means clustering. Common metrics such as cosine similarity, Euclidean distance, and Manhattan distance are often used for such comparisons - for example in muscular synergies of the human motor control system. However, their applicability and interpretability diminish as dimensionality increases. This paper provides a comprehensive analysis of the effects of dimensionality on these metrics. Our results reveal significant limitations of cosine similarity, particularly its dependency on the dimensionality of the vectors, leading to biased and less interpretable outcomes. To address this, we introduce the Dimension Insensitive Euclidean Metric (DIEM) which demonstrates superior robustness and generalizability across dimensions. DIEM maintains consistent variability and eliminates the biases observed in traditional metrics, making it a reliable tool for high-dimensional comparisons. This novel metric has the potential to replace cosine similarity, providing a more accurate and insightful method to analyze multidimensional data in fields ranging from neuromotor control to machine and deep learning.
Related papers
- Complexity Matters: Effective Dimensionality as a Measure for Adversarial Robustness [0.7366405857677227]
In this work, we investigate the relationship between a model's effective dimensionality and its robustness properties.
We run experiments on commercial-scale models that are often used in real-world environments such as YOLO and ResNet.
We reveal a near-linear inverse relationship between effective dimensionality and adversarial robustness, that is models with a lower dimensionality exhibit better robustness.
arXiv Detail & Related papers (2024-10-24T09:01:34Z) - Separable DeepONet: Breaking the Curse of Dimensionality in Physics-Informed Machine Learning [0.0]
In the absence of labeled datasets, we utilize the PDE residual loss to learn the physical system, an approach known as physics-informed DeepONet.
This method faces significant computational challenges, primarily due to the curse of dimensionality, as the computational cost increases exponentially with finer discretization.
We introduce the Separable DeepONet framework to address these challenges and improve scalability for high-dimensional PDEs.
arXiv Detail & Related papers (2024-07-21T16:33:56Z) - Size-invariance Matters: Rethinking Metrics and Losses for Imbalanced Multi-object Salient Object Detection [133.66006666465447]
Current metrics are size-sensitive, where larger objects are focused, and smaller ones tend to be ignored.
We argue that the evaluation should be size-invariant because bias based on size is unjustified without additional semantic information.
We develop an optimization framework tailored to this goal, achieving considerable improvements in detecting objects of different sizes.
arXiv Detail & Related papers (2024-05-16T03:01:06Z) - Interpreting the Curse of Dimensionality from Distance Concentration and
Manifold Effect [0.6906005491572401]
We first summarize five challenges associated with manipulating high-dimensional data.
We then delve into two major causes of the curse of dimensionality, distance concentration and manifold effect.
By interpreting the causes of the curse of dimensionality, we can better understand the limitations of current models and algorithms.
arXiv Detail & Related papers (2023-12-31T08:22:51Z) - A Geometrical Approach to Evaluate the Adversarial Robustness of Deep
Neural Networks [52.09243852066406]
Adversarial Converging Time Score (ACTS) measures the converging time as an adversarial robustness metric.
We validate the effectiveness and generalization of the proposed ACTS metric against different adversarial attacks on the large-scale ImageNet dataset.
arXiv Detail & Related papers (2023-10-10T09:39:38Z) - Simultaneous Dimensionality Reduction: A Data Efficient Approach for Multimodal Representations Learning [0.0]
We explore two primary classes of approaches to dimensionality reduction (DR): Independent Dimensionality Reduction (IDR) and Simultaneous Dimensionality Reduction (SDR)
In IDR, each modality is compressed independently, striving to retain as much variation within each modality as possible.
In SDR, one simultaneously compresses the modalities to maximize the covariation between the reduced descriptions while paying less attention to how much individual variation is preserved.
arXiv Detail & Related papers (2023-10-05T04:26:24Z) - An evaluation framework for dimensionality reduction through sectional
curvature [59.40521061783166]
In this work, we aim to introduce the first highly non-supervised dimensionality reduction performance metric.
To test its feasibility, this metric has been used to evaluate the performance of the most commonly used dimension reduction algorithms.
A new parameterized problem instance generator has been constructed in the form of a function generator.
arXiv Detail & Related papers (2023-03-17T11:59:33Z) - An Experimental Study of Dimension Reduction Methods on Machine Learning
Algorithms with Applications to Psychometrics [77.34726150561087]
We show that dimension reduction can decrease, increase, or provide the same accuracy as no reduction of variables.
Our tentative results find that dimension reduction tends to lead to better performance when used for classification tasks.
arXiv Detail & Related papers (2022-10-19T22:07:13Z) - Exploring Dimensionality Reduction Techniques in Multilingual
Transformers [64.78260098263489]
This paper gives a comprehensive account of the impact of dimensional reduction techniques on the performance of state-of-the-art multilingual Siamese Transformers.
It shows that it is possible to achieve an average reduction in the number of dimensions of $91.58% pm 2.59%$ and $54.65% pm 32.20%$, respectively.
arXiv Detail & Related papers (2022-04-18T17:20:55Z) - Effective Data-aware Covariance Estimator from Compressed Data [63.16042585506435]
We propose a data-aware weighted sampling based covariance matrix estimator, namely DACE, which can provide an unbiased covariance matrix estimation.
We conduct extensive experiments on both synthetic and real-world datasets to demonstrate the superior performance of our DACE.
arXiv Detail & Related papers (2020-10-10T10:10:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.