論文の概要: Histopathological Image Classification with Cell Morphology Aware Deep Neural Networks
- arxiv url: http://arxiv.org/abs/2407.08625v1
- Date: Thu, 11 Jul 2024 16:03:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-12 16:40:31.969533
- Title: Histopathological Image Classification with Cell Morphology Aware Deep Neural Networks
- Title(参考訳): 深部神経回路を意識した細胞形態を用いた病理組織像分類
- Authors: Andrey Ignatov, Josephine Yates, Valentina Boeva,
- Abstract要約: 本稿では,細胞形態を学習し,多数のがんタイプを同定するために事前訓練した新しいDeepCMorphモデルを提案する。
7175例の8736例の診断スライドから抽出した270K以上の組織パッチからなるPan-Cancer TCGAデータセット上で,本モジュールを事前訓練した。
提案手法は, 82%以上の精度で32種類の癌を検出でき, 従来提案されていたすべてのソリューションを4%以上上回る性能を示した。
- 参考スコア(独自算出の注目度): 11.749248917866915
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Histopathological images are widely used for the analysis of diseased (tumor) tissues and patient treatment selection. While the majority of microscopy image processing was previously done manually by pathologists, recent advances in computer vision allow for accurate recognition of lesion regions with deep learning-based solutions. Such models, however, usually require extensive annotated datasets for training, which is often not the case in the considered task, where the number of available patient data samples is very limited. To deal with this problem, we propose a novel DeepCMorph model pre-trained to learn cell morphology and identify a large number of different cancer types. The model consists of two modules: the first one performs cell nuclei segmentation and annotates each cell type, and is trained on a combination of 8 publicly available datasets to ensure its high generalizability and robustness. The second module combines the obtained segmentation map with the original microscopy image and is trained for the downstream task. We pre-trained this module on the Pan-Cancer TCGA dataset consisting of over 270K tissue patches extracted from 8736 diagnostic slides from 7175 patients. The proposed solution achieved a new state-of-the-art performance on the dataset under consideration, detecting 32 cancer types with over 82% accuracy and outperforming all previously proposed solutions by more than 4%. We demonstrate that the resulting pre-trained model can be easily fine-tuned on smaller microscopy datasets, yielding superior results compared to the current top solutions and models initialized with ImageNet weights. The codes and pre-trained models presented in this paper are available at: https://github.com/aiff22/DeepCMorph
- Abstract(参考訳): 病理組織像は疾患(腫瘍)組織の解析や治療選択に広く用いられている。
顕微鏡画像処理の大半は、これまでは病理学者が手動で行っていたが、近年のコンピュータビジョンの進歩により、深層学習によるソリューションによる病変領域の正確な認識が可能になった。
しかし、そのようなモデルは通常、トレーニングのために広範囲なアノテートデータセットを必要とするが、多くの場合、利用可能な患者データサンプルの数が非常に限られているため、考慮すべきタスクではそうではない。
この問題に対処するために,細胞形態を学習し,多数の異なるがんタイプを特定するために事前訓練された新しいDeepCMorphモデルを提案する。
モデルは2つのモジュールで構成されており、最初のモジュールは細胞核のセグメンテーションを実行し、各細胞タイプに注釈を付け、その高い一般化性と堅牢性を確保するために8つの公開データセットの組み合わせで訓練される。
第2モジュールは、得られたセグメンテーションマップと元の顕微鏡画像を組み合わせて、下流タスクのために訓練する。
7175例の8736症例から抽出した270K以上の組織から抽出したPan-Cancer TCGAデータセット上で,本モジュールを事前訓練した。
提案手法は, 82%以上の精度で32種類の癌を検出でき, 従来提案されていたすべてのソリューションを4%以上上回る性能を示した。
得られた事前学習モデルは、より小さな顕微鏡データセットで容易に微調整でき、現在のトップソリューションやImageNet重み付き初期化モデルよりも優れた結果が得られることを示した。
本論文で提示されたコードと事前訓練済みモデルは以下の通りである。
関連論文リスト
- LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
LVM-Medは、大規模医療データセットに基づいてトレーニングされた、最初のディープネットワークファミリーである。
55の公開データセットから約13万の医療画像を収集しました。
LVM-Medは、多くの最先端の教師付き、自己監督型、基礎モデルよりも経験的に優れている。
論文 参考訳(メタデータ) (2023-06-20T22:21:34Z) - AMIGO: Sparse Multi-Modal Graph Transformer with Shared-Context
Processing for Representation Learning of Giga-pixel Images [53.29794593104923]
本稿では,スライド病理像全体に対する共有コンテキスト処理の新たな概念を提案する。
AMIGOは、組織内のセルラーグラフを使用して、患者に単一の表現を提供する。
我々のモデルは、データの20%以下で同じ性能を達成できる程度に、欠落した情報に対して強い堅牢性を示す。
論文 参考訳(メタデータ) (2023-03-01T23:37:45Z) - Application of Transfer Learning and Ensemble Learning in Image-level
Classification for Breast Histopathology [9.037868656840736]
CAD(Computer-Aided Diagnosis)では、従来の分類モデルでは、主に1つのネットワークを使って特徴を抽出する。
本稿では良性病変と悪性病変のバイナリ分類のための画像レベルラベルに基づく深層アンサンブルモデルを提案する。
結果: アンサンブルネットワークモデルにおいて、画像レベルのバイナリ分類は9,8.90%の精度を達成する。
論文 参考訳(メタデータ) (2022-04-18T13:31:53Z) - One Model is All You Need: Multi-Task Learning Enables Simultaneous
Histology Image Segmentation and Classification [3.8725005247905386]
組織領域のセグメンテーションと分類のためのマルチタスク学習手法を提案する。
一つのネットワークで同時予測を可能にする。
また,機能共有の結果,学習した表現が下流タスクの改善に有効であることを示す。
論文 参考訳(メタデータ) (2022-02-28T20:22:39Z) - Multi-Scale Input Strategies for Medulloblastoma Tumor Classification
using Deep Transfer Learning [59.30734371401316]
乳腺芽腫は小児で最も多い悪性脳腫瘍である。
CNNはMBサブタイプ分類に有望な結果を示した。
タイルサイズと入力戦略の影響について検討した。
論文 参考訳(メタデータ) (2021-09-14T09:42:37Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
本稿では,エンド・ツー・エンドのMB腫瘍分類を提案し,様々な入力サイズとネットワーク次元の一致した移動学習を提案する。
161ケースのデータセットを用いて、より大規模な入力解像度を持つ事前学習されたEfficientNetが、大幅な性能改善をもたらすことを実証した。
論文 参考訳(メタデータ) (2021-09-10T13:07:11Z) - Acute Lymphoblastic Leukemia Detection from Microscopic Images Using
Weighted Ensemble of Convolutional Neural Networks [4.095759108304108]
本稿では,深層畳み込みニューラルネットワーク(cnns)を用いた顕微鏡細胞画像からの全検出タスクを自動化した。
ネットワークのより優れた一般化を達成するために、様々なデータ拡張と前処理が組み込まれている。
提案する重み付きアンサンブルモデルでは, アンサンブル候補のカッパ値を重みとして, 重み付きF1スコア88.6 %, バランス付き精度86.2 %, 予備試験セットのAUC0.941を出力した。
論文 参考訳(メタデータ) (2021-05-09T18:58:48Z) - Generative Adversarial U-Net for Domain-free Medical Image Augmentation [49.72048151146307]
注釈付き医用画像の不足は、医用画像コンピューティングの分野における最大の課題の1つだ。
本稿では,生成逆U-Netという新しい生成手法を提案する。
当社の新しいモデルは、ドメインフリーで、さまざまな医療画像に汎用性があります。
論文 参考訳(メタデータ) (2021-01-12T23:02:26Z) - Deep learning for lithological classification of carbonate rock micro-CT
images [52.77024349608834]
本研究は,ブラジルのプリサルト炭酸塩岩微視的画像のパターン同定にディープラーニング技術を適用することを目的としている。
4つの畳み込みニューラルネットワークモデルが提案された。
精度によると、リサイズ画像で訓練されたモデル2は、最初の評価アプローチでは平均75.54%、2番目の評価では平均81.33%に達した。
論文 参考訳(メタデータ) (2020-07-30T19:14:00Z) - An interpretable classifier for high-resolution breast cancer screening
images utilizing weakly supervised localization [45.00998416720726]
医用画像の特徴に対処する枠組みを提案する。
このモデルはまず、画像全体の低容量だがメモリ効率のよいネットワークを使用して、最も情報性の高い領域を識別する。
次に、選択したリージョンから詳細を収集するために、別の高容量ネットワークを適用します。
最後に、グローバルおよびローカル情報を集約して最終的な予測を行うフュージョンモジュールを使用する。
論文 参考訳(メタデータ) (2020-02-13T15:28:42Z) - Segmentation of Cellular Patterns in Confocal Images of Melanocytic
Lesions in vivo via a Multiscale Encoder-Decoder Network (MED-Net) [2.0487455621441377]
マルチスケールデコーダネットワーク(MED-Net)は,パターンのクラスに定量的なラベル付けを行う。
メラノサイト病変の117個の反射共焦点顕微鏡(RCM)モザイクの非重畳分割について,本モデルを訓練・試験した。
論文 参考訳(メタデータ) (2020-01-03T22:34:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。