SPOCKMIP: Segmentation of Vessels in MRAs with Enhanced Continuity using Maximum Intensity Projection as Loss
- URL: http://arxiv.org/abs/2407.08655v1
- Date: Thu, 11 Jul 2024 16:39:24 GMT
- Title: SPOCKMIP: Segmentation of Vessels in MRAs with Enhanced Continuity using Maximum Intensity Projection as Loss
- Authors: Chethan Radhakrishna, Karthikesh Varma Chintalapati, Sri Chandana Hudukula Ram Kumar, Raviteja Sutrave, Hendrik Mattern, Oliver Speck, Andreas Nürnberger, Soumick Chatterjee,
- Abstract summary: This study focuses on improving the segmentation quality using the Maximum Intensity Projection(MIP) as an additional loss criterion.
Two methods are proposed with the incorporation of MIPs of label segmentation on the single(z-axis) and multiple perceivable axes of the 3D volume.
The proposed MIP-based methods produce segmentations with improved vessel continuity, which is evident in visual examinations of ROIs.
- Score: 0.5224038339798621
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Identification of vessel structures of different sizes in biomedical images is crucial in the diagnosis of many neurodegenerative diseases. However, the sparsity of good-quality annotations of such images makes the task of vessel segmentation challenging. Deep learning offers an efficient way to segment vessels of different sizes by learning their high-level feature representations and the spatial continuity of such features across dimensions. Semi-supervised patch-based approaches have been effective in identifying small vessels of one to two voxels in diameter. This study focuses on improving the segmentation quality by considering the spatial correlation of the features using the Maximum Intensity Projection~(MIP) as an additional loss criterion. Two methods are proposed with the incorporation of MIPs of label segmentation on the single~(z-axis) and multiple perceivable axes of the 3D volume. The proposed MIP-based methods produce segmentations with improved vessel continuity, which is evident in visual examinations of ROIs. Patch-based training is improved by introducing an additional loss term, MIP loss, to penalise the predicted discontinuity of vessels. A training set of 14 volumes is selected from the StudyForrest dataset comprising of 18 7-Tesla 3D Time-of-Flight~(ToF) Magnetic Resonance Angiography (MRA) images. The generalisation performance of the method is evaluated using the other unseen volumes in the dataset. It is observed that the proposed method with multi-axes MIP loss produces better quality segmentations with a median Dice of $80.245 \pm 0.129$. Also, the method with single-axis MIP loss produces segmentations with a median Dice of $79.749 \pm 0.109$. Furthermore, a visual comparison of the ROIs in the predicted segmentation reveals a significant improvement in the continuity of the vessels when MIP loss is incorporated into training.
Related papers
- SMILE-UHURA Challenge -- Small Vessel Segmentation at Mesoscopic Scale from Ultra-High Resolution 7T Magnetic Resonance Angiograms [60.35639972035727]
The lack of publicly available annotated datasets has impeded the development of robust, machine learning-driven segmentation algorithms.
The SMILE-UHURA challenge addresses the gap in publicly available annotated datasets by providing an annotated dataset of Time-of-Flight angiography acquired with 7T MRI.
Dice scores reached up to 0.838 $pm$ 0.066 and 0.716 $pm$ 0.125 on the respective datasets, with an average performance of up to 0.804 $pm$ 0.15.
arXiv Detail & Related papers (2024-11-14T17:06:00Z) - Semi-Supervised Bone Marrow Lesion Detection from Knee MRI Segmentation Using Mask Inpainting Models [7.197545510697077]
Bone marrow lesions (BMLs) are critical indicators of knee osteoarthritis (OA)
effective detection of BMLs in MRI is vital for OA diagnosis and treatment.
This paper proposes a semi-supervised local anomaly detection method using mask inpainting models for identification of BMLs in high-resolution knee MRI.
arXiv Detail & Related papers (2024-09-27T23:47:47Z) - Enhancing Weakly Supervised 3D Medical Image Segmentation through
Probabilistic-aware Learning [52.249748801637196]
3D medical image segmentation is a challenging task with crucial implications for disease diagnosis and treatment planning.
Recent advances in deep learning have significantly enhanced fully supervised medical image segmentation.
We propose a novel probabilistic-aware weakly supervised learning pipeline, specifically designed for 3D medical imaging.
arXiv Detail & Related papers (2024-03-05T00:46:53Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - Segmentation method for cerebral blood vessels from MRA using hysteresis [1.6516902135723863]
We develop a classical segmentation method that generates vessel ground truth from Magnetic Resonance Angiography.
The method combines size-specific Hessian filters, DL thresholding and connected component correction.
The method, which is available on GitHub, can be used to train DL models for vessel segmentation.
arXiv Detail & Related papers (2023-03-09T08:34:21Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Mixed-UNet: Refined Class Activation Mapping for Weakly-Supervised
Semantic Segmentation with Multi-scale Inference [28.409679398886304]
We develop a novel model named Mixed-UNet, which has two parallel branches in the decoding phase.
We evaluate the designed Mixed-UNet against several prevalent deep learning-based segmentation approaches on our dataset collected from the local hospital and public datasets.
arXiv Detail & Related papers (2022-05-06T08:37:02Z) - MS Lesion Segmentation: Revisiting Weighting Mechanisms for Federated
Learning [92.91544082745196]
Federated learning (FL) has been widely employed for medical image analysis.
FL's performance is limited for multiple sclerosis (MS) lesion segmentation tasks.
We propose the first FL MS lesion segmentation framework via two effective re-weighting mechanisms.
arXiv Detail & Related papers (2022-05-03T14:06:03Z) - Multiple Sclerosis Lesions Segmentation using Attention-Based CNNs in
FLAIR Images [0.2578242050187029]
Multiple Sclerosis (MS) is an autoimmune, and demyelinating disease that leads to lesions in the central nervous system.
Up to now a multitude of multimodality automatic biomedical approaches is used to segment lesions.
Authors propose a method employing just one modality (FLAIR image) to segment MS lesions accurately.
arXiv Detail & Related papers (2022-01-05T21:37:43Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
Early and accurate severity assessment of Coronavirus disease 2019 (COVID-19) based on computed tomography (CT) images offers a great help to the estimation of intensive care unit event.
To augment the labeled data and improve the generalization ability of the classification model, it is necessary to aggregate data from multiple sites.
This task faces several challenges including class imbalance between mild and severe infections, domain distribution discrepancy between sites, and presence of heterogeneous features.
arXiv Detail & Related papers (2021-09-08T07:56:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.