Segmentation method for cerebral blood vessels from MRA using hysteresis
- URL: http://arxiv.org/abs/2303.05113v1
- Date: Thu, 9 Mar 2023 08:34:21 GMT
- Title: Segmentation method for cerebral blood vessels from MRA using hysteresis
- Authors: Georgia Kenyon, Stephan Lau, Michael A. Chappell and Mark Jenkinson
- Abstract summary: We develop a classical segmentation method that generates vessel ground truth from Magnetic Resonance Angiography.
The method combines size-specific Hessian filters, DL thresholding and connected component correction.
The method, which is available on GitHub, can be used to train DL models for vessel segmentation.
- Score: 1.6516902135723863
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Segmentation of cerebral blood vessels from Magnetic Resonance Imaging (MRI)
is an open problem that could be solved with deep learning (DL). However,
annotated data for training is often scarce. Due to the absence of open-source
tools, we aim to develop a classical segmentation method that generates vessel
ground truth from Magnetic Resonance Angiography for DL training of
segmentation across a variety of modalities. The method combines size-specific
Hessian filters, hysteresis thresholding and connected component correction.
The optimal choice of processing steps was evaluated with a blinded scoring by
a clinician using 24 3D images. The results show that all method steps are
necessary to produce the highest (14.2/15) vessel segmentation quality score.
Omitting the connected component correction caused the largest quality loss.
The method, which is available on GitHub, can be used to train DL models for
vessel segmentation.
Related papers
- SPOCKMIP: Segmentation of Vessels in MRAs with Enhanced Continuity using Maximum Intensity Projection as Loss [0.5224038339798621]
This study focuses on improving the segmentation quality using the Maximum Intensity Projection(MIP) as an additional loss criterion.
Two methods are proposed with the incorporation of MIPs of label segmentation on the single(z-axis) and multiple perceivable axes of the 3D volume.
The proposed MIP-based methods produce segmentations with improved vessel continuity, which is evident in visual examinations of ROIs.
arXiv Detail & Related papers (2024-07-11T16:39:24Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Weakly Supervised Medical Image Segmentation With Soft Labels and Noise
Robust Loss [0.16490701092527607]
Training deep learning models commonly requires large datasets with expert-labeled annotations.
Image-based medical diagnosis tools using deep learning models trained with incorrect segmentation labels can lead to false diagnoses and treatment suggestions.
The aim of this paper was to develop and evaluate a method to generate probabilistic labels based on multi-rater annotations and anatomical knowledge of the lesion features in MRI.
arXiv Detail & Related papers (2022-09-16T21:07:59Z) - ISLES 2022: A multi-center magnetic resonance imaging stroke lesion
segmentation dataset [36.278933802685316]
This dataset comprises 400 multi-vendor MRI cases with high variability in stroke lesion size, quantity and location.
It is split into a training dataset of n=250 and a test dataset of n=150.
The test dataset will be used for model validation only and will not be released to the public.
arXiv Detail & Related papers (2022-06-14T08:54:40Z) - Weakly-supervised Biomechanically-constrained CT/MRI Registration of the
Spine [72.85011943179894]
We propose a weakly-supervised deep learning framework that preserves the rigidity and the volume of each vertebra while maximizing the accuracy of the registration.
We specifically design these losses to depend only on the CT label maps since automatic vertebra segmentation in CT gives more accurate results contrary to MRI.
Our results show that adding the anatomy-aware losses increases the plausibility of the inferred transformation while keeping the accuracy untouched.
arXiv Detail & Related papers (2022-05-16T10:59:55Z) - Mixed-UNet: Refined Class Activation Mapping for Weakly-Supervised
Semantic Segmentation with Multi-scale Inference [28.409679398886304]
We develop a novel model named Mixed-UNet, which has two parallel branches in the decoding phase.
We evaluate the designed Mixed-UNet against several prevalent deep learning-based segmentation approaches on our dataset collected from the local hospital and public datasets.
arXiv Detail & Related papers (2022-05-06T08:37:02Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - Multiple Sclerosis Lesions Segmentation using Attention-Based CNNs in
FLAIR Images [0.2578242050187029]
Multiple Sclerosis (MS) is an autoimmune, and demyelinating disease that leads to lesions in the central nervous system.
Up to now a multitude of multimodality automatic biomedical approaches is used to segment lesions.
Authors propose a method employing just one modality (FLAIR image) to segment MS lesions accurately.
arXiv Detail & Related papers (2022-01-05T21:37:43Z) - Weakly-supervised Learning For Catheter Segmentation in 3D Frustum
Ultrasound [74.22397862400177]
We propose a novel Frustum ultrasound based catheter segmentation method.
The proposed method achieved the state-of-the-art performance with an efficiency of 0.25 second per volume.
arXiv Detail & Related papers (2020-10-19T13:56:22Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
The aim of this work is to develop an accurate automatic segmentation method based on deep learning models for the myocardial borders on LGE-MRI.
A total number of 320 exams (with a mean number of 6 slices per exam) were used for training and 28 exams used for testing.
The performance analysis of the proposed ensemble model in the basal and middle slices was similar as compared to intra-observer study and slightly lower at apical slices.
arXiv Detail & Related papers (2020-05-27T20:44:38Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.