Semi-Supervised Bone Marrow Lesion Detection from Knee MRI Segmentation Using Mask Inpainting Models
- URL: http://arxiv.org/abs/2409.19185v1
- Date: Fri, 27 Sep 2024 23:47:47 GMT
- Title: Semi-Supervised Bone Marrow Lesion Detection from Knee MRI Segmentation Using Mask Inpainting Models
- Authors: Shihua Qin, Ming Zhang, Juan Shan, Taehoon Shin, Jonghye Woo, Fangxu Xing,
- Abstract summary: Bone marrow lesions (BMLs) are critical indicators of knee osteoarthritis (OA)
effective detection of BMLs in MRI is vital for OA diagnosis and treatment.
This paper proposes a semi-supervised local anomaly detection method using mask inpainting models for identification of BMLs in high-resolution knee MRI.
- Score: 7.197545510697077
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Bone marrow lesions (BMLs) are critical indicators of knee osteoarthritis (OA). Since they often appear as small, irregular structures with indistinguishable edges in knee magnetic resonance images (MRIs), effective detection of BMLs in MRI is vital for OA diagnosis and treatment. This paper proposes a semi-supervised local anomaly detection method using mask inpainting models for identification of BMLs in high-resolution knee MRI, effectively integrating a 3D femur bone segmentation model, a large mask inpainting model, and a series of post-processing techniques. The method was evaluated using MRIs at various resolutions from a subset of the public Osteoarthritis Initiative database. Dice score, Intersection over Union (IoU), and pixel-level sensitivity, specificity, and accuracy showed an advantage over the multiresolution knowledge distillation method-a state-of-the-art global anomaly detection method. Especially, segmentation performance is enhanced on higher-resolution images, achieving an over two times performance increase on the Dice score and the IoU score at a 448x448 resolution level. We also demonstrate that with increasing size of the BML region, both the Dice and IoU scores improve as the proportion of distinguishable boundary decreases. The identified BML masks can serve as markers for downstream tasks such as segmentation and classification. The proposed method has shown a potential in improving BML detection, laying a foundation for further advances in imaging-based OA research.
Related papers
- Enhanced Self-supervised Learning for Multi-modality MRI Segmentation and Classification: A Novel Approach Avoiding Model Collapse [6.3467517115551875]
Multi-modality magnetic resonance imaging (MRI) can provide complementary information for computer-aided diagnosis.
Traditional deep learning algorithms are suitable for identifying specific anatomical structures segmenting lesions and classifying diseases with magnetic resonance images.
Self-supervised learning (SSL) can effectively learn feature representations from unlabeled data by pre-training and is demonstrated to be effective in natural image analysis.
Most SSL methods ignore the similarity of multi-modality MRI, leading to model collapse.
We establish and validate a multi-modality MRI masked autoencoder consisting of hybrid mask pattern (HMP) and pyramid barlow twin (PBT
arXiv Detail & Related papers (2024-07-15T01:11:30Z) - SPOCKMIP: Segmentation of Vessels in MRAs with Enhanced Continuity using Maximum Intensity Projection as Loss [0.5224038339798621]
This study focuses on improving the segmentation quality using the Maximum Intensity Projection(MIP) as an additional loss criterion.
Two methods are proposed with the incorporation of MIPs of label segmentation on the single(z-axis) and multiple perceivable axes of the 3D volume.
The proposed MIP-based methods produce segmentations with improved vessel continuity, which is evident in visual examinations of ROIs.
arXiv Detail & Related papers (2024-07-11T16:39:24Z) - Discrepancy-based Diffusion Models for Lesion Detection in Brain MRI [1.8420387715849447]
Diffusion probabilistic models (DPMs) have exhibited significant effectiveness in computer vision tasks.
Their notable performance heavily relies on labelled datasets, which limits their application in medical images.
This paper introduces a novel framework by incorporating distinctive discrepancy features.
arXiv Detail & Related papers (2024-05-08T11:26:49Z) - CodaMal: Contrastive Domain Adaptation for Malaria Detection in Low-Cost Microscopes [51.5625352379093]
Malaria is a major health issue worldwide, and its diagnosis requires scalable solutions that can work effectively with low-cost microscopes (LCM)
Deep learning-based methods have shown success in computer-aided diagnosis from microscopic images.
These methods need annotated images that show cells affected by malaria parasites and their life stages.
Annotating images from LCM significantly increases the burden on medical experts compared to annotating images from high-cost microscopes (HCM)
arXiv Detail & Related papers (2024-02-16T06:57:03Z) - Improving Vision Anomaly Detection with the Guidance of Language
Modality [64.53005837237754]
This paper tackles the challenges for vision modality from a multimodal point of view.
We propose Cross-modal Guidance (CMG) to tackle the redundant information issue and sparse space issue.
To learn a more compact latent space for the vision anomaly detector, CMLE learns a correlation structure matrix from the language modality.
arXiv Detail & Related papers (2023-10-04T13:44:56Z) - AMLP:Adaptive Masking Lesion Patches for Self-supervised Medical Image
Segmentation [67.97926983664676]
Self-supervised masked image modeling has shown promising results on natural images.
However, directly applying such methods to medical images remains challenging.
We propose a novel self-supervised medical image segmentation framework, Adaptive Masking Lesion Patches (AMLP)
arXiv Detail & Related papers (2023-09-08T13:18:10Z) - RGMIM: Region-Guided Masked Image Modeling for Learning Meaningful Representations from X-Ray Images [49.24576562557866]
We propose a novel method called region-guided masked image modeling (RGMIM) for learning meaningful representations from X-ray images.
RGMIM significantly improved performance in small data volumes, such as 5% and 10% of the training set compared to other methods.
arXiv Detail & Related papers (2022-11-01T07:41:03Z) - Mixed-UNet: Refined Class Activation Mapping for Weakly-Supervised
Semantic Segmentation with Multi-scale Inference [28.409679398886304]
We develop a novel model named Mixed-UNet, which has two parallel branches in the decoding phase.
We evaluate the designed Mixed-UNet against several prevalent deep learning-based segmentation approaches on our dataset collected from the local hospital and public datasets.
arXiv Detail & Related papers (2022-05-06T08:37:02Z) - Multiple Sclerosis Lesions Segmentation using Attention-Based CNNs in
FLAIR Images [0.2578242050187029]
Multiple Sclerosis (MS) is an autoimmune, and demyelinating disease that leads to lesions in the central nervous system.
Up to now a multitude of multimodality automatic biomedical approaches is used to segment lesions.
Authors propose a method employing just one modality (FLAIR image) to segment MS lesions accurately.
arXiv Detail & Related papers (2022-01-05T21:37:43Z) - Malignancy Prediction and Lesion Identification from Clinical
Dermatological Images [65.1629311281062]
We consider machine-learning-based malignancy prediction and lesion identification from clinical dermatological images.
We first identify all lesions present in the image regardless of sub-type or likelihood of malignancy, then it estimates their likelihood of malignancy, and through aggregation, it also generates an image-level likelihood of malignancy.
arXiv Detail & Related papers (2021-04-02T20:52:05Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.