論文の概要: Modeling Spatial Extremal Dependence of Precipitation Using Distributional Neural Networks
- arxiv url: http://arxiv.org/abs/2407.08668v2
- Date: Fri, 08 Aug 2025 07:16:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-11 20:39:05.86215
- Title: Modeling Spatial Extremal Dependence of Precipitation Using Distributional Neural Networks
- Title(参考訳): 分布型ニューラルネットワークを用いた降水の空間的極端依存性のモデル化
- Authors: Christopher Bülte, Lisa Leimenstoll, Melanie Schienle,
- Abstract要約: 本稿では,降水量最大値の依存関係を決定するために生成ニューラルネットワークを用いたシミュレーションに基づく推定手法を提案する。
我々は2021-2023年の間、西ドイツの月次降雨極大調査にこの手法を用いた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this work, we propose a simulation-based estimation approach using generative neural networks to determine dependencies of precipitation maxima and their underlying uncertainty in time and space. Within the common framework of max-stable processes for extremes under temporal and spatial dependence, our methodology allows estimating the process parameters and their respective uncertainty, but also delivers an explicit nonparametric estimate of the spatial dependence through the pairwise extremal coefficient function. We illustrate the effectiveness and robustness of our approach in a thorough finite sample study where we obtain good performance in complex settings for which closed-form likelihood estimation becomes intractable. We use the technique for studying monthly rainfall maxima in Western Germany for the period 2021-2023, which is of particular interest since it contains an extreme precipitation and consecutive flooding event in July 2021 that had a massive deadly impact. Beyond the considered setting, the presented methodology and its main generative ideas also have great potential for other applications.
- Abstract(参考訳): 本研究では,生成ニューラルネットワークを用いたシミュレーションに基づく推定手法を提案する。
時間的および空間的依存下での極値の最大安定過程の共通枠組みでは,プロセスパラメータとその不確かさを推定できるが,空間的依存の明示的な非パラメトリック推定は両極係数関数を通して行うことができる。
本手法の有効性とロバスト性について, 閉形式推定が難易度となるような複雑な条件下で, 良好な性能が得られるという, 完全な有限サンプルスタディで概説した。
2021~2023年の間、西ドイツの月次降水量極大を調査するためにこの手法を用いたが、これは特に、2021年7月の極度の降水と連続的な洪水イベントを含む、大きな致命的な影響を被ったためである。
検討された設定の他に、提示された方法論とその主要な生成的アイデアは、他のアプリケーションにも大きな可能性を秘めている。
関連論文リスト
- Gradient Boosting for Spatial Regression Models with Autoregressive Disturbances [0.0]
自己回帰障害を伴う空間回帰モデルに対して,新しいモデルに基づく勾配促進アルゴリズムを提案する。
このアルゴリズムは、高次元の設定でも実現可能な代替推定手順を提供する。
ケーススタディでは、潜在的な空間依存構造を取り入れたドイツ地区の寿命をモデル化する。
論文 参考訳(メタデータ) (2025-06-16T16:40:47Z) - Multi-fidelity Parameter Estimation Using Conditional Diffusion Models [6.934199382834925]
複素系におけるパラメータ推定の不確実性定量化のための多要素法を提案する。
対象条件分布のサンプル化のために,条件生成モデルを訓練した。
提案手法の有効性をいくつかの数値例で示す。
論文 参考訳(メタデータ) (2025-04-02T16:54:47Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
シミュレーションベース推論(SBI)は、入力パラメータを所定の観測に関連付ける後部分布を近似することができる。
本研究では、モデルのパラメータをより正確に推測するために、複数の観測値が利用できる、背の高いデータ拡張について考察する。
提案手法を,最近提案した各種数値実験の競合手法と比較し,数値安定性と計算コストの観点から,その優位性を実証した。
論文 参考訳(メタデータ) (2024-04-11T09:23:36Z) - Deep-Ensemble-Based Uncertainty Quantification in Spatiotemporal Graph
Neural Networks for Traffic Forecasting [2.088376060651494]
本稿では,短期交通予測のための最先端手法である拡散畳み込みリカレントニューラルネットワーク(DCRNN)に注目した。
我々はDCRNNの不確実性を定量化するスケーラブルなディープアンサンブル手法を開発した。
我々の汎用的かつスケーラブルなアプローチは、現在最先端のベイズ的手法や、多くの一般的な頻繁な手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-04-04T16:10:55Z) - Time varying regression with hidden linear dynamics [74.9914602730208]
線形力学系に従って未知のパラメータが進化することを前提とした時間変化線形回帰モデルを再検討する。
反対に、基礎となる力学が安定である場合、このモデルのパラメータは2つの通常の最小二乗推定と組み合わせることで、データから推定できることが示される。
論文 参考訳(メタデータ) (2021-12-29T23:37:06Z) - Neural Networks for Parameter Estimation in Intractable Models [0.0]
本稿では,最大安定過程からパラメータを推定する方法を示す。
モデルシミュレーションのデータを入力として使用し,統計的パラメータを学習するために深層ニューラルネットワークを訓練する。
論文 参考訳(メタデータ) (2021-07-29T21:59:48Z) - Physics-constrained deep neural network method for estimating parameters
in a redox flow battery [68.8204255655161]
バナジウムフローバッテリ(VRFB)のゼロ次元(0D)モデルにおけるパラメータ推定のための物理拘束型ディープニューラルネットワーク(PCDNN)を提案する。
そこで, PCDNN法は, 動作条件のモデルパラメータを推定し, 電圧の0Dモデル予測を改善することができることを示す。
また,PCDNNアプローチでは,トレーニングに使用しない操作条件のパラメータ値を推定する一般化能力が向上することが実証された。
論文 参考訳(メタデータ) (2021-06-21T23:42:58Z) - RNN with Particle Flow for Probabilistic Spatio-temporal Forecasting [30.277213545837924]
古典的な統計モデルの多くは、時系列データに存在する複雑さと高い非線形性を扱うのに不足することが多い。
本研究では,時系列データを非線形状態空間モデルからのランダムな実現とみなす。
粒子流は, 複雑で高次元的な設定において極めて有効であることを示すため, 状態の後方分布を近似するツールとして用いられる。
論文 参考訳(メタデータ) (2021-06-10T21:49:23Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
シミュレーションベースの推論は、その可能性が実際に計算できない場合でもモデルのパラメータを学習することができる。
あるクラスのメソッドは、異なるパラメータでシミュレートされたデータを使用して、確率とエビデンス比の償却推定器を推定する。
モデルパラメータとシミュレーションデータ間の相互情報の観点から,本手法が定式化可能であることを示す。
論文 参考訳(メタデータ) (2021-06-03T12:59:16Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
実験観測に基づくモデルのパラメータを推定することは、科学的方法の中心である。
特に困難な設定は、モデルが強く不確定であるとき、すなわち、パラメータの異なるセットが同一の観測をもたらすときである。
本稿では,グローバルパラメータを共有する観測の補助的セットによって伝達される付加情報を利用して,その不確定性を破る手法を提案する。
論文 参考訳(メタデータ) (2021-02-12T12:23:13Z) - Causal Modeling with Stochastic Confounders [11.881081802491183]
この作業は、共同設立者との因果推論を拡張します。
本稿では,ランダムな入力空間を持つ表現子定理に基づく因果推論のための変分推定手法を提案する。
論文 参考訳(メタデータ) (2020-04-24T00:34:44Z) - Semiparametric Bayesian Forecasting of Spatial Earthquake Occurrences [77.68028443709338]
本稿では, Epidemic Type Aftershock Sequence (ETAS) モデルのベイズ的完全定式化を提案する。
地理的領域における主震の発生は不均一な空間的点過程に従うと仮定される。
論文 参考訳(メタデータ) (2020-02-05T10:11:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。