論文の概要: FAR-Trans: An Investment Dataset for Financial Asset Recommendation
- arxiv url: http://arxiv.org/abs/2407.08692v1
- Date: Thu, 11 Jul 2024 17:30:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-10 19:46:00.906463
- Title: FAR-Trans: An Investment Dataset for Financial Asset Recommendation
- Title(参考訳): FAR-Trans:金融資産レコメンデーションのための投資データセット
- Authors: Javier Sanz-Cruzado, Nikolaos Droukas, Richard McCreadie,
- Abstract要約: 金融資産レコメンデーション(FAR)は、レコメンデーションシステムのサブドメインである。
我々はFARのための最初の公開データセットであるFAR-Transを紹介し、価格情報と小売投資家取引を含む。
また、将来のベースラインとして使用するデータに対して、11個のFARアルゴリズムのベンチマーキング比較を提供する。
- 参考スコア(独自算出の注目度): 2.4920094574814855
- License:
- Abstract: Financial asset recommendation (FAR) is a sub-domain of recommender systems which identifies useful financial securities for investors, with the expectation that they will invest capital on the recommended assets. FAR solutions analyse and learn from multiple data sources, including time series pricing data, customer profile information and expectations, as well as past investments. However, most models have been developed over proprietary datasets, making a comparison over a common benchmark impossible. In this paper, we aim to solve this problem by introducing FAR-Trans, the first public dataset for FAR, containing pricing information and retail investor transactions acquired from a large European financial institution. We also provide a bench-marking comparison between eleven FAR algorithms over the data for use as future baselines. The dataset can be downloaded from https://doi.org/10.5525/gla.researchdata.1658 .
- Abstract(参考訳): ファイナンシャル・アセット・レコメンデーション(英: Financial assets recommendation、FAR)は、投資家にとって有用な金融証券を識別するレコメンデーションシステムのサブドメインである。
FARソリューションは、時系列価格データ、顧客プロファイル情報と期待、過去の投資など、複数のデータソースを分析して学習する。
しかし、ほとんどのモデルはプロプライエタリなデータセット上で開発されており、共通のベンチマークで比較することは不可能である。
本稿では、欧州の大手金融機関から取得した価格情報と小売投資家取引を含む、FARの最初の公開データセットであるFAR-Transを導入することで、この問題を解決することを目的とする。
また、将来のベースラインとして使用するデータに対して、11個のFARアルゴリズムのベンチマーキング比較を提供する。
データセットはhttps://doi.org/10.5525/gla.researchdata.1658からダウンロードできる。
関連論文リスト
- AI in Investment Analysis: LLMs for Equity Stock Ratings [0.2916558661202724]
本稿では,Large Language Models (LLMs) のマルチ水平ストックレーティングへの適用について検討する。
本研究は、LLMを活用して株価評価の精度と一貫性を向上させることで、これらの課題に対処する。
提案手法は,フォワードリターンで評価した場合,従来の株価評価手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-10-30T15:06:57Z) - AlphaFin: Benchmarking Financial Analysis with Retrieval-Augmented Stock-Chain Framework [48.3060010653088]
我々はAlphaFinデータセットをリリースし、従来の研究データセット、リアルタイム財務データ、手書きのチェーン・オブ・プリート(CoT)データを組み合わせています。
次に、AlphaFinデータセットを使用して、金融分析タスクを効果的に処理するために、Stock-Chainと呼ばれる最先端の手法をベンチマークします。
論文 参考訳(メタデータ) (2024-03-19T09:45:33Z) - Data Acquisition: A New Frontier in Data-centric AI [65.90972015426274]
まず、現在のデータマーケットプレースを調査し、データセットに関する詳細な情報を提供するプラットフォームが不足していることを明らかにする。
次に、データプロバイダと取得者間のインタラクションをモデル化するベンチマークであるDAMチャレンジを紹介します。
提案手法の評価は,機械学習における効果的なデータ取得戦略の必要性を浮き彫りにしている。
論文 参考訳(メタデータ) (2023-11-22T22:15:17Z) - American Option Pricing using Self-Attention GRU and Shapley Value
Interpretation [0.0]
本稿では,ゲートリカレントユニット(GRU)と自己認識機構に基づいて,SPY(ETF)オプションの価格を予測する機械学習手法を提案する。
我々は、多層パーセプトロン(MLP)、長期記憶(LSTM)、自己注意型LSTM、自己注意型GRUの4つの異なる機械学習モデルを構築した。
論文 参考訳(メタデータ) (2023-10-19T06:05:46Z) - PIXIU: A Large Language Model, Instruction Data and Evaluation Benchmark
for Finance [63.51545277822702]
PIXIUは、命令データ付き微調整LLaMAに基づく最初の金融大規模言語モデル(LLM)を含む包括的なフレームワークである。
我々はLLaMAを細調整してFinMAを提案する。
我々は、FinMAと既存のLLMを詳細に分析し、重要な財政課題に対処する際の長所と短所を明らかにする。
論文 参考訳(メタデータ) (2023-06-08T14:20:29Z) - Holder Recommendations using Graph Representation Learning & Link
Prediction [0.0]
現在のメソッドは、特定の製品分類とリターン、手数料、カテゴリなどの属性に基づいて、リードをサーフェスします。
本稿では,金融商品の保有者空間にリードレコメンデーションシステムを構築するための包括的データ駆動型フレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-10T16:36:17Z) - DataPerf: Benchmarks for Data-Centric AI Development [81.03754002516862]
DataPerfは、MLデータセットとデータ中心アルゴリズムを評価するための、コミュニティ主導のベンチマークスイートである。
私たちは、この反復的な開発をサポートするために、複数の課題を抱えたオープンなオンラインプラットフォームを提供しています。
ベンチマーク、オンライン評価プラットフォーム、ベースライン実装はオープンソースである。
論文 参考訳(メタデータ) (2022-07-20T17:47:54Z) - A Data-Driven Framework for Identifying Investment Opportunities in
Private Equity [0.0]
本稿では、投資機会の自動スクリーニングのためのフレームワークを提案する。
このフレームワークは、企業の財務的および管理的立場を評価するために、複数のソースからデータを引き出す。
次に、説明可能な人工知能(XAI)エンジンを使用して投資勧告を提案する。
論文 参考訳(メタデータ) (2022-04-04T21:28:34Z) - TTRS: Tinkoff Transactions Recommender System benchmark [62.997667081978825]
TTRS - Tinkoff Transactions Recommender Systemベンチマークを示す。
この金融取引ベンチマークには、約1万人のユーザーと、14ヶ月で1000以上の商業ブランドの間で200万以上のインタラクションが含まれている。
また,現在普及しているRecSys手法を次の期間の推薦タスクで総合的に比較し,その性能を様々な指標や推奨目標に対して詳細に分析する。
論文 参考訳(メタデータ) (2021-10-11T20:04:07Z) - Robo-Advising: Enhancing Investment with Inverse Optimization and Deep
Reinforcement Learning [13.23731449431572]
2つのMLエージェントからなるフルサイクルデータ駆動型投資ロボマネジメントフレームワークを提案する。
提案された投資パイプラインは、2016年4月1日から2021年2月1日までの実際の市場データに適用され、S&P 500ベンチマークポートフォリオを一貫して上回っている。
論文 参考訳(メタデータ) (2021-05-19T17:20:03Z) - Reinforcement-Learning based Portfolio Management with Augmented Asset
Movement Prediction States [71.54651874063865]
ポートフォリオマネジメント(PM)は、最大利益や最小リスクといった投資目標を達成することを目的としている。
本稿では,PMのための新しいステート拡張RLフレームワークであるSARLを提案する。
当社の枠組みは, 金融PMにおける2つのユニークな課題に対処することを目的としている。(1) データの異種データ -- 資産毎の収集情報は通常, 多様性, ノイズ, 不均衡(ニュース記事など), (2) 環境の不確実性 -- 金融市場は多様で非定常である。
論文 参考訳(メタデータ) (2020-02-09T08:10:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。