論文の概要: HO-FMN: Hyperparameter Optimization for Fast Minimum-Norm Attacks
- arxiv url: http://arxiv.org/abs/2407.08806v1
- Date: Thu, 11 Jul 2024 18:30:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 01:46:09.547103
- Title: HO-FMN: Hyperparameter Optimization for Fast Minimum-Norm Attacks
- Title(参考訳): HO-FMN: 高速最小ノルム攻撃のためのハイパーパラメータ最適化
- Authors: Raffaele Mura, Giuseppe Floris, Luca Scionis, Giorgio Piras, Maura Pintor, Ambra Demontis, Giorgio Giacinto, Battista Biggio, Fabio Roli,
- Abstract要約: 本稿では,よく知られた高速最小ノルム攻撃アルゴリズムのパラメトリック変種を提案する。
我々は12のロバストモデルを再評価し、追加のチューニングを必要とせずに敵の摂動が小さくなることを示した。
- 参考スコア(独自算出の注目度): 14.626176607206748
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Gradient-based attacks are a primary tool to evaluate robustness of machine-learning models. However, many attacks tend to provide overly-optimistic evaluations as they use fixed loss functions, optimizers, step-size schedulers, and default hyperparameters. In this work, we tackle these limitations by proposing a parametric variation of the well-known fast minimum-norm attack algorithm, whose loss, optimizer, step-size scheduler, and hyperparameters can be dynamically adjusted. We re-evaluate 12 robust models, showing that our attack finds smaller adversarial perturbations without requiring any additional tuning. This also enables reporting adversarial robustness as a function of the perturbation budget, providing a more complete evaluation than that offered by fixed-budget attacks, while remaining efficient. We release our open-source code at https://github.com/pralab/HO-FMN.
- Abstract(参考訳): グラディエントベースの攻撃は、機械学習モデルの堅牢性を評価する主要なツールである。
しかし、多くの攻撃は、固定損失関数、オプティマイザ、ステップサイズスケジューラ、デフォルトのハイパーパラメータを使用するため、過度に最適化的な評価を提供する傾向がある。
本研究では,損失,最適化,ステップサイズスケジューラ,ハイパーパラメータを動的に調整可能な,よく知られた高速最小ノルム攻撃アルゴリズムのパラメトリック変動を提案することで,これらの制約に対処する。
我々は12のロバストモデルを再評価し、追加のチューニングを必要とせずに敵の摂動が小さくなることを示した。
これはまた、摂動予算の関数として敵の堅牢性を報告し、固定予算攻撃によって提供されるものよりも完全な評価を提供すると同時に、効率を保っている。
オープンソースコードはhttps://github.com/pralab/HO-FMN.comで公開しています。
関連論文リスト
- LoRTA: Low Rank Tensor Adaptation of Large Language Models [70.32218116940393]
Low Rank Adaptation (LoRA) は、下流タスクのための大規模な事前学習モデルに効果的に適応する、PEFT (Efficient Fine Tuning) 手法として人気がある。
モデル更新に低階テンソルパラメトリゼーションを用いる新しい手法を提案する。
提案手法は,大規模言語モデルの微調整に有効であり,比較性能を維持しつつ,パラメータ数の大幅な削減を実現している。
論文 参考訳(メタデータ) (2024-10-05T06:59:50Z) - Fine-Tuning Adaptive Stochastic Optimizers: Determining the Optimal Hyperparameter $ε$ via Gradient Magnitude Histogram Analysis [0.7366405857677226]
我々は、損失の大きさの経験的確率密度関数に基づく新しい枠組みを導入し、これを「緩やかな等級ヒストグラム」と呼ぶ。
そこで本稿では, 最適安全のための精密かつ高精度な探索空間を自動推定するために, 勾配等級ヒストグラムを用いた新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-11-20T04:34:19Z) - Improving Fast Minimum-Norm Attacks with Hyperparameter Optimization [12.526318578195724]
本稿では、損失関数、自動化、ステップサイズスケジューラの選択により、超パラメータ最適化が高速な最小ノルム攻撃を改善することを示す。
オープンソースコードはhttps://www.pralab.com/HO-FMN.comで公開しています。
論文 参考訳(メタデータ) (2023-10-12T10:03:25Z) - Hyperparameter Learning under Data Poisoning: Analysis of the Influence
of Regularization via Multiobjective Bilevel Optimization [3.3181276611945263]
機械学習(ML)アルゴリズムは、アルゴリズムのパフォーマンスを意図的に劣化させるためにトレーニングデータの一部が操作される、中毒攻撃に対して脆弱である。
最適な攻撃は、二段階最適化問題として定式化することができ、最悪のシナリオでその堅牢性を評価するのに役立つ。
論文 参考訳(メタデータ) (2023-06-02T15:21:05Z) - Versatile Weight Attack via Flipping Limited Bits [68.45224286690932]
本研究では,展開段階におけるモデルパラメータを変更する新たな攻撃パラダイムについて検討する。
有効性とステルスネスの目標を考慮し、ビットフリップに基づく重み攻撃を行うための一般的な定式化を提供する。
SSA(Single sample attack)とTSA(Singr sample attack)の2例を報告した。
論文 参考訳(メタデータ) (2022-07-25T03:24:58Z) - Sparse and Imperceptible Adversarial Attack via a Homotopy Algorithm [93.80082636284922]
少数の敵対的攻撃は、数ピクセルを摂動するだけでディープ・ネットワーク(DNN)を騙すことができる。
近年の取り組みは、他の等級のl_infty摂動と組み合わせている。
本稿では,空間的・神経的摂動に対処するホモトピーアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-06-10T20:11:36Z) - Adaptive Feature Alignment for Adversarial Training [56.17654691470554]
CNNは通常、敵攻撃に対して脆弱であり、セキュリティに敏感なアプリケーションに脅威をもたらす。
任意の攻撃強度の特徴を生成するための適応的特徴アライメント(AFA)を提案する。
本手法は任意の攻撃強度の特徴を自動的に整列するように訓練されている。
論文 参考訳(メタデータ) (2021-05-31T17:01:05Z) - Regularization Can Help Mitigate Poisoning Attacks... with the Right
Hyperparameters [1.8570591025615453]
機械学習アルゴリズムは、トレーニングデータの一部を操作してアルゴリズムのパフォーマンスを低下させる、中毒攻撃に対して脆弱である。
通常、正規化ハイパーパラメータが一定であると仮定する現在のアプローチは、アルゴリズムの堅牢性に対する過度に悲観的な見方をもたらすことを示す。
本稿では,攻撃が過度パラメータに与える影響を考慮し,エフェミニマックスの双レベル最適化問題としてモデル化した新たな最適攻撃定式化を提案する。
論文 参考訳(メタデータ) (2021-05-23T14:34:47Z) - Targeted Attack against Deep Neural Networks via Flipping Limited Weight
Bits [55.740716446995805]
我々は,悪質な目的で展開段階におけるモデルパラメータを修飾する新しい攻撃パラダイムについて検討する。
私たちのゴールは、特定のサンプルをサンプル修正なしでターゲットクラスに誤分類することです。
整数プログラミングにおける最新の手法を利用することで、このBIP問題を連続最適化問題として等価に再構成する。
論文 参考訳(メタデータ) (2021-02-21T03:13:27Z) - Covert Model Poisoning Against Federated Learning: Algorithm Design and
Optimization [76.51980153902774]
フェデレーテッド・ラーニング(FL)はパラメータ伝達中にFLモデルに対する外部攻撃に対して脆弱である。
本稿では,最先端の防御アグリゲーション機構に対処する有効なMPアルゴリズムを提案する。
実験の結果,提案したCMPアルゴリズムは,既存の攻撃機構よりも効果的で,かなり優れていることが示された。
論文 参考訳(メタデータ) (2021-01-28T03:28:18Z) - Regularisation Can Mitigate Poisoning Attacks: A Novel Analysis Based on
Multiobjective Bilevel Optimisation [3.3181276611945263]
機械学習(ML)アルゴリズムは、アルゴリズムのパフォーマンスを意図的に劣化させるためにトレーニングデータの一部が操作される、中毒攻撃に対して脆弱である。
2レベル問題として定式化できる最適毒殺攻撃は、最悪のシナリオにおける学習アルゴリズムの堅牢性を評価するのに役立つ。
このアプローチはアルゴリズムの堅牢性に対する過度に悲観的な見方をもたらすことを示す。
論文 参考訳(メタデータ) (2020-02-28T19:46:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。