Benchmarking quantum computers
- URL: http://arxiv.org/abs/2407.08828v1
- Date: Thu, 11 Jul 2024 19:25:30 GMT
- Title: Benchmarking quantum computers
- Authors: Timothy Proctor, Kevin Young, Andrew D. Baczewski, Robin Blume-Kohout,
- Abstract summary: Good benchmarks empower scientists, engineers, programmers, and users to understand a computing system's power.
Bad benchmarks can misdirect research and inhibit progress.
We discuss the role of benchmarks and benchmarking, and how good benchmarks can drive and measure progress.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid pace of development in quantum computing technology has sparked a proliferation of benchmarks for assessing the performance of quantum computing hardware and software. Good benchmarks empower scientists, engineers, programmers, and users to understand a computing system's power, but bad benchmarks can misdirect research and inhibit progress. In this Perspective, we survey the science of quantum computer benchmarking. We discuss the role of benchmarks and benchmarking, and how good benchmarks can drive and measure progress towards the long-term goal of useful quantum computations, i.e., "quantum utility". We explain how different kinds of benchmark quantify the performance of different parts of a quantum computer, we survey existing benchmarks, critically discuss recent trends in benchmarking, and highlight important open research questions in this field.
Related papers
- Technology and Performance Benchmarks of IQM's 20-Qubit Quantum Computer [56.435136806763055]
IQM Quantum Computers is described covering both the QPU and the rest of the full-stack quantum computer.
The focus is on a 20-qubit quantum computer featuring the Garnet QPU and its architecture, which we will scale up to 150 qubits.
We present QPU and system-level benchmarks, including a median 2-qubit gate fidelity of 99.5% and genuinely entangling all 20 qubits in a Greenberger-Horne-Zeilinger (GHZ) state.
arXiv Detail & Related papers (2024-08-22T14:26:10Z) - Benchmarking Quantum Computers: Towards a Standard Performance Evaluation Approach [0.7499722271664147]
We review the most important aspects of both classical processor benchmarks and the metrics comprising them.
We analyze the intrinsic properties that characterize the paradigm of quantum computing.
We propose general guidelines for quantum benchmarking.
arXiv Detail & Related papers (2024-07-15T17:39:59Z) - Assessing and Advancing the Potential of Quantum Computing: A NASA Case Study [11.29246196323319]
We describe NASA's work in assessing and advancing the potential of quantum computing.
We discuss advances in algorithms, both near- and longer-term, and the results of our explorations on current hardware and with simulations.
This work also includes physics-inspired classical algorithms that can be used at application scale today.
arXiv Detail & Related papers (2024-06-21T19:05:42Z) - QuAS: Quantum Application Score for benchmarking the utility of quantum computers [0.0]
This paper presents a revised holistic scoring method called the Quantum Application Score (QuAS)
We discuss how to integrate both and thereby obtain an application-level metric that better quantifies the practical utility of quantum computers.
We evaluate the new metric on different hardware platforms such as D-Wave and IBM as well as quantum simulators of Quantum Inspire and Rigetti.
arXiv Detail & Related papers (2024-06-06T09:39:58Z) - Quantum Computing for High-Energy Physics: State of the Art and
Challenges. Summary of the QC4HEP Working Group [33.8590861326926]
This paper is led by CERN, DESY and IBM and provides the status of high-energy physics quantum computations.
We give examples for theoretical and experimental target benchmark applications, which can be addressed in the near future.
Having the IBM 100 x 100 challenge in mind, where possible, we also provide resource estimates for the examples given using error mitigated quantum computing.
arXiv Detail & Related papers (2023-07-06T18:01:02Z) - Iterative Qubits Management for Quantum Index Searching in a Hybrid
System [56.39703478198019]
IQuCS aims at index searching and counting in a quantum-classical hybrid system.
We implement IQuCS with Qiskit and conduct intensive experiments.
Results demonstrate that it reduces qubits consumption by up to 66.2%.
arXiv Detail & Related papers (2022-09-22T21:54:28Z) - Multi-disk clutch optimization using quantum annealing [34.82692226532414]
We develop a new quantum algorithm to solve a problem with significant practical relevance in clutch manufacturing.
It is demonstrated how quantum optimization can play a role in real industrial applications in the manufacturing sector.
arXiv Detail & Related papers (2022-08-11T16:34:51Z) - QPack Scores: Quantitative performance metrics for application-oriented
quantum computer benchmarking [1.0323063834827415]
This paper presents the benchmark score definitions of QPack, an application-oriented cross-platform benchmarking suite for quantum computers and simulators.
A comparison is made between various quantum computer simulators, running both locally and on vendors' remote cloud services.
arXiv Detail & Related papers (2022-05-24T15:18:24Z) - Quantum computing hardware for HEP algorithms and sensing [36.67390040418004]
Quantum information science harnesses the principles of quantum mechanics to realize computational algorithms with complexities vastly intractable by current computer platforms.
Fermilab's Superconducting Quantum Materials and Systems (SQMS) Center is dedicated to providing breakthroughs in quantum computing and sensing.
We discuss the two most promising superconducting quantum architectures for HEP algorithms, i.e. three-level systems (qutrits) supported by transmon devices coupled to planar devices and multi-level systems (qudits with arbitrary N energy levels) supported by superconducting 3D cavities.
arXiv Detail & Related papers (2022-04-19T01:37:36Z) - Application-Oriented Performance Benchmarks for Quantum Computing [0.0]
benchmarking suite is designed to be readily accessible to a broad audience of users.
Our methodology is constructed to anticipate advances in quantum computing hardware that are likely to emerge in the next five years.
arXiv Detail & Related papers (2021-10-07T01:45:06Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
We apply a quantum algorithm to a D-Wave quantum annealer to solve a small scale seismic inversions problem.
The accuracy achieved by the quantum computer is at least as good as that of the classical computer.
arXiv Detail & Related papers (2020-05-06T14:18:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.