QuAS: Quantum Application Score for benchmarking the utility of quantum computers
- URL: http://arxiv.org/abs/2406.03905v1
- Date: Thu, 6 Jun 2024 09:39:58 GMT
- Title: QuAS: Quantum Application Score for benchmarking the utility of quantum computers
- Authors: Koen J. Mesman, Ward van der Schoot, Matthias Möller, Niels M. P. Neumann,
- Abstract summary: This paper presents a revised holistic scoring method called the Quantum Application Score (QuAS)
We discuss how to integrate both and thereby obtain an application-level metric that better quantifies the practical utility of quantum computers.
We evaluate the new metric on different hardware platforms such as D-Wave and IBM as well as quantum simulators of Quantum Inspire and Rigetti.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Benchmarking quantum computers helps to quantify them and bringing the technology to the market. Various application-level metrics exist to benchmark a quantum device at an application level. This paper presents a revised holistic scoring method called the Quantum Application Score (QuAS) incorporating strong points of previous metrics, such as QPack and the Q-score. We discuss how to integrate both and thereby obtain an application-level metric that better quantifies the practical utility of quantum computers. We evaluate the new metric on different hardware platforms such as D-Wave and IBM as well as quantum simulators of Quantum Inspire and Rigetti.
Related papers
- Technology and Performance Benchmarks of IQM's 20-Qubit Quantum Computer [56.435136806763055]
IQM Quantum Computers is described covering both the QPU and the rest of the full-stack quantum computer.
The focus is on a 20-qubit quantum computer featuring the Garnet QPU and its architecture, which we will scale up to 150 qubits.
We present QPU and system-level benchmarks, including a median 2-qubit gate fidelity of 99.5% and genuinely entangling all 20 qubits in a Greenberger-Horne-Zeilinger (GHZ) state.
arXiv Detail & Related papers (2024-08-22T14:26:10Z) - Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
We present a model for parallelizing simulation of quantum circuit executions.
The model can take advantage of its backend-agnostic features, enabling parallel quantum circuit execution over any target backend.
arXiv Detail & Related papers (2024-06-05T17:16:07Z) - Quantum utility -- definition and assessment of a practical quantum
advantage [0.0]
Different use-cases come with different requirements for size, weight, power consumption, or data privacy.
This paper aims to incorporate these characteristics into a concept coined quantum utility.
It demonstrates the effectiveness and practicality of quantum computers for various applications.
arXiv Detail & Related papers (2023-03-03T18:33:46Z) - Extending the Q-score to an Application-level Quantum Metric Framework [0.0]
evaluating the performance of quantum devices is an important step towards scaling quantum devices and eventually using them in practice.
A prominent quantum metric is given by the Q-score metric of Atos.
We show that the Q-score defines a framework of quantum metrics, which allows benchmarking using different problems, user settings and solvers.
arXiv Detail & Related papers (2023-02-01T18:03:13Z) - Iterative Qubits Management for Quantum Index Searching in a Hybrid
System [56.39703478198019]
IQuCS aims at index searching and counting in a quantum-classical hybrid system.
We implement IQuCS with Qiskit and conduct intensive experiments.
Results demonstrate that it reduces qubits consumption by up to 66.2%.
arXiv Detail & Related papers (2022-09-22T21:54:28Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - QPack Scores: Quantitative performance metrics for application-oriented
quantum computer benchmarking [1.0323063834827415]
This paper presents the benchmark score definitions of QPack, an application-oriented cross-platform benchmarking suite for quantum computers and simulators.
A comparison is made between various quantum computer simulators, running both locally and on vendors' remote cloud services.
arXiv Detail & Related papers (2022-05-24T15:18:24Z) - QPack: Quantum Approximate Optimization Algorithms as universal
benchmark for quantum computers [1.1602089225841632]
We present QPack, a universal benchmark for Noisy Intermediate-Scale Quantum (NISQ) computers.
QPack evaluates the maximum problem size a quantum computer can solve, the required runtime, as well as the achieved accuracy.
arXiv Detail & Related papers (2021-03-31T16:20:51Z) - Some Size and Structure Metrics for Quantum Software [1.7704011486040847]
This paper proposes some basic metrics for quantum software.
These metrics are defined at different abstraction levels to represent various size and structure attributes.
The proposed metrics can be used to evaluate quantum software from various viewpoints.
arXiv Detail & Related papers (2021-03-16T02:53:17Z) - Quantum walk processes in quantum devices [55.41644538483948]
We study how to represent quantum walk on a graph as a quantum circuit.
Our approach paves way for the efficient implementation of quantum walks algorithms on quantum computers.
arXiv Detail & Related papers (2020-12-28T18:04:16Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.