Predicting properties of quantum systems by regression on a quantum computer
- URL: http://arxiv.org/abs/2407.08847v1
- Date: Thu, 11 Jul 2024 20:06:08 GMT
- Title: Predicting properties of quantum systems by regression on a quantum computer
- Authors: Andrey Kardashin, Yerassyl Balkybek, Konstantin Antipin, Vladimir V. Palyulin,
- Abstract summary: We propose a data-agnostic method for predicting quantum properties.
We numerically test our approach in learning to predict (i) the parameter of a parametrized channel given its output state, (ii) entanglement of two-qubit states, and (iii) the parameter of a parametrized Hamiltonian given its ground state.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum computers can be considered as a natural means for performing machine learning tasks for labeled data which are inherently quantum. Many quantum machine learning techniques have been developed for solving classification problems, such as distinguishing between phases of matter or quantum processes. Similarly, one can consider a more general problem of regression, when the task is to predict continuous labels quantifying some property of quantum states, such as purity or entanglement. In this work, we propose a data-agnostic method for predicting such properties. The method is based on the notion of parametrized quantum circuits, and it seeks to find an observable the expectation of which gives the estimation of the property of interest with presumably low variance. We numerically test our approach in learning to predict (i) the parameter of a parametrized channel given its output state, (ii) entanglement of two-qubit states, and (iii) the parameter of a parametrized Hamiltonian given its ground state. The results show that the proposed method is able to find observables such that they provide highly accurate predictions of the considered properties, and in some cases even saturate the Cramer-Rao bound, which characterizes the prediction error.
Related papers
- Dual-Capability Machine Learning Models for Quantum Hamiltonian Parameter Estimation and Dynamics Prediction [2.142387003055715]
This study introduces a machine learning model with dual capabilities.
It can deduce time-dependent Hamiltonian parameters from observed changes in local observables.
It can predict the evolution of these observables based on Hamiltonian parameters.
arXiv Detail & Related papers (2024-05-22T12:21:57Z) - Robust Estimation of Nonlinear Properties of Quantum Processes [10.24856054281464]
We introduce two protocols for estimation of nonlinear quantum process properties.
The first protocol offers a robust and sound method to estimate the out-of-time-ordered correlation.
The second protocol estimates unitarity, effectively characterizing the incoherence of quantum channels.
arXiv Detail & Related papers (2023-12-15T09:33:11Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Practical limitations of quantum data propagation on noisy quantum processors [0.9362259192191963]
We show that owing to the noisy nature of current quantum processors, such a quantum algorithm will require single- and two-qubit gates with very low error probability to produce reliable results.
Specifically, we provide the upper bounds on how the relative error in variational parameters' propagation scales with the probability of noise in quantum hardware.
arXiv Detail & Related papers (2023-06-22T17:12:52Z) - Quantum Conformal Prediction for Reliable Uncertainty Quantification in
Quantum Machine Learning [47.991114317813555]
Quantum models implement implicit probabilistic predictors that produce multiple random decisions for each input through measurement shots.
This paper proposes to leverage such randomness to define prediction sets for both classification and regression that provably capture the uncertainty of the model.
arXiv Detail & Related papers (2023-04-06T22:05:21Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Optimality and Complexity in Measured Quantum-State Stochastic Processes [0.0]
We show that optimal prediction requires using an infinite number of temporal features.
We identify the mechanism underlying this complicatedness as generator nonunifilarity.
This makes it possible to quantitatively explore the influence that measurement choice has on a quantum process' degrees of randomness.
arXiv Detail & Related papers (2022-05-08T21:43:06Z) - Analytical techniques in single and multi-parameter quantum estimation
theory: a focused review [0.0]
This review provides techniques on the analytical calculation of the quantum Fisher information as well as the quantum Fisher information matrix.
It provides a mathematical transition from classical to quantum estimation theory applied to many freedom quantum systems.
arXiv Detail & Related papers (2022-04-29T17:29:45Z) - Noisy Quantum Kernel Machines [58.09028887465797]
An emerging class of quantum learning machines is that based on the paradigm of quantum kernels.
We study how dissipation and decoherence affect their performance.
We show that decoherence and dissipation can be seen as an implicit regularization for the quantum kernel machines.
arXiv Detail & Related papers (2022-04-26T09:52:02Z) - Analytical and experimental study of center line miscalibrations in M\o
lmer-S\o rensen gates [51.93099889384597]
We study a systematic perturbative expansion in miscalibrated parameters of the Molmer-Sorensen entangling gate.
We compute the gate evolution operator which allows us to obtain relevant key properties.
We verify the predictions from our model by benchmarking them against measurements in a trapped-ion quantum processor.
arXiv Detail & Related papers (2021-12-10T10:56:16Z) - In and out of equilibrium quantum metrology with mean-field quantum
criticality [68.8204255655161]
We study the influence that collective transition phenomena have on quantum metrological protocols.
The single spherical quantum spin (SQS) serves as stereotypical toy model that allows analytical insights on a mean-field level.
arXiv Detail & Related papers (2020-01-09T19:20:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.