論文の概要: A Hybrid Spiking-Convolutional Neural Network Approach for Advancing Machine Learning Models
- arxiv url: http://arxiv.org/abs/2407.08861v1
- Date: Thu, 11 Jul 2024 20:50:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 01:36:13.445770
- Title: A Hybrid Spiking-Convolutional Neural Network Approach for Advancing Machine Learning Models
- Title(参考訳): ハイブリッドスパイキング・畳み込みニューラルネットワークによる機械学習モデルの改良
- Authors: Sanaullah, Kaushik Roy, Ulrich Rückert, Thorsten Jungeblut,
- Abstract要約: 本稿では,新しいハイブリッド・スパイキング・畳み込みニューラルネットワーク(SC-NN)モデルを提案する。
我々のアプローチは、イベントベースの計算や時間処理などのSNNのユニークな機能と、CNNの強力な表現学習能力を利用する。
モデルは、マスクを使用して欠落したリージョンを生成するイメージインペイント用に特別に設計されたカスタムデータセットに基づいてトレーニングされる。
- 参考スコア(独自算出の注目度): 6.528272856589831
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this article, we propose a novel standalone hybrid Spiking-Convolutional Neural Network (SC-NN) model and test on using image inpainting tasks. Our approach uses the unique capabilities of SNNs, such as event-based computation and temporal processing, along with the strong representation learning abilities of CNNs, to generate high-quality inpainted images. The model is trained on a custom dataset specifically designed for image inpainting, where missing regions are created using masks. The hybrid model consists of SNNConv2d layers and traditional CNN layers. The SNNConv2d layers implement the leaky integrate-and-fire (LIF) neuron model, capturing spiking behavior, while the CNN layers capture spatial features. In this study, a mean squared error (MSE) loss function demonstrates the training process, where a training loss value of 0.015, indicates accurate performance on the training set and the model achieved a validation loss value as low as 0.0017 on the testing set. Furthermore, extensive experimental results demonstrate state-of-the-art performance, showcasing the potential of integrating temporal dynamics and feature extraction in a single network for image inpainting.
- Abstract(参考訳): 本稿では,新しいスタンドアロンハイブリッドスパイキング・畳み込みニューラルネットワーク(SC-NN)モデルを提案する。
提案手法では,イベントベース計算や時間処理などのSNNのユニークな機能と,CNNの強力な表現学習能力を用いて,高品質なインペイント画像を生成する。
モデルは、マスクを使用して欠落したリージョンを生成するイメージインペイント用に特別に設計されたカスタムデータセットに基づいてトレーニングされる。
ハイブリッドモデルはSNNConv2dレイヤと従来のCNNレイヤで構成されている。
SNNConv2d層は、漏れやすい統合と発火(LIF)ニューロンモデルを実装し、スパイクの振る舞いを捉え、CNN層は空間的特徴を捉えている。
本研究では,平均二乗誤差(MSE)損失関数を用いて,トレーニングセット上でのトレーニング損失値0.015の精度を示すトレーニングプロセスを示し,テストセット上での検証損失値を0.0017以下とした。
さらに,画像インパインティングのための1つのネットワークにおいて,時間的ダイナミクスと特徴抽出を統合する可能性を示した。
関連論文リスト
- Deep Multi-Threshold Spiking-UNet for Image Processing [51.88730892920031]
本稿では,SNN(Spike Neural Networks)とU-Netアーキテクチャを組み合わせた,画像処理のためのスパイキング-UNetの概念を紹介する。
効率的なスパイキング-UNetを実現するためには,スパイクによる高忠実度情報伝播の確保と,効果的なトレーニング戦略の策定という2つの課題に直面する。
実験の結果,画像のセグメンテーションとデノイングにおいて,スパイキングUNetは非スパイキングと同等の性能を発揮することがわかった。
論文 参考訳(メタデータ) (2023-07-20T16:00:19Z) - A Gradient Boosting Approach for Training Convolutional and Deep Neural
Networks [0.0]
グラディエントブースティング(GB)に基づく畳み込みニューラルネットワーク(CNN)とディープニューラルネットワークの訓練方法を紹介する。
提案モデルでは,同一アーキテクチャの標準CNNとDeep-NNに対して,分類精度の点で優れた性能を示す。
論文 参考訳(メタデータ) (2023-02-22T12:17:32Z) - Convolutional Neural Generative Coding: Scaling Predictive Coding to
Natural Images [79.07468367923619]
畳み込み型神経生成符号化(Conv-NGC)を開発した。
我々は、潜伏状態マップを段階的に洗練する柔軟な神経生物学的動機付けアルゴリズムを実装した。
本研究は,脳にインスパイアされたニューラル・システムによる再建と画像復調の課題に対する効果について検討する。
論文 参考訳(メタデータ) (2022-11-22T06:42:41Z) - DeepDC: Deep Distance Correlation as a Perceptual Image Quality
Evaluator [53.57431705309919]
ImageNet Pre-trained Deep Neural Network (DNN)は、効果的な画像品質評価(IQA)モデルを構築するための顕著な転送性を示す。
我々は,事前学習DNN機能のみに基づく新しいフル参照IQA(FR-IQA)モデルを開発した。
5つの標準IQAデータセット上で,提案した品質モデルの優位性を示すため,包括的実験を行った。
論文 参考訳(メタデータ) (2022-11-09T14:57:27Z) - Decoupled Mixup for Generalized Visual Recognition [71.13734761715472]
視覚認識のためのCNNモデルを学習するための新しい「デカップリング・ミクスアップ」手法を提案する。
本手法は,各画像を識別領域と雑音発生領域に分離し,これらの領域を均一に組み合わせてCNNモデルを訓練する。
実験結果から,未知のコンテキストからなるデータに対する本手法の高一般化性能を示す。
論文 参考訳(メタデータ) (2022-10-26T15:21:39Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックハードウェア上に実装された場合、有望なエネルギー効率のAIモデルである。
非分化性のため、SNNを効率的に訓練することは困難である。
本稿では,ハイパフォーマンスを実現するスパイク表現法(DSR)の差分法を提案する。
論文 参考訳(メタデータ) (2022-05-01T12:44:49Z) - Supervised Training of Siamese Spiking Neural Networks with Earth's
Mover Distance [4.047840018793636]
本研究は,高可逆性シアムニューラルネットモデルをイベントデータ領域に適応させる。
我々はスパイク・トレインとスパイク・ニューラル・ネットワーク(SNN)の間の地球のモーバー距離を最適化するための教師付きトレーニング・フレームワークを導入する。
論文 参考訳(メタデータ) (2022-02-20T00:27:57Z) - Image Quality Assessment using Contrastive Learning [50.265638572116984]
我々は、補助的な問題を解決するために、対照的な対の目的を用いて深層畳み込みニューラルネットワーク(CNN)を訓練する。
本研究では,最新のNR画像品質モデルと比較して,ContriQUEが競争性能を向上することを示す。
以上の結果から,大きなラベル付き主観的画像品質データセットを必要とせずに,知覚的関連性を持つ強力な品質表現が得られることが示唆された。
論文 参考訳(メタデータ) (2021-10-25T21:01:00Z) - Neural Knitworks: Patched Neural Implicit Representation Networks [1.0470286407954037]
画像合成を実現する自然画像の暗黙的表現学習のためのアーキテクチャであるKnitworkを提案する。
私たちの知る限りでは、画像のインペインティング、超解像化、デノイングといった合成作業に適した座標ベースのパッチの実装は、これが初めてである。
その結果, ピクセルではなくパッチを用いた自然な画像のモデリングにより, 忠実度が高い結果が得られた。
論文 参考訳(メタデータ) (2021-09-29T13:10:46Z) - SAR Image Classification Based on Spiking Neural Network through
Spike-Time Dependent Plasticity and Gradient Descent [7.106664778883502]
スパイキングニューラルネットワーク(SNN)は、脳のような知能のコアコンポーネントの1つである。
本稿では、教師なしおよび教師なし学習SNNに基づいて、完全なSAR画像を構築する。
論文 参考訳(メタデータ) (2021-06-15T09:36:04Z) - Single Image Dehazing Using Ranking Convolutional Neural Network [43.9523642309301]
本稿では,単一画像復調のための新しいランクリング畳み込みニューラルネットワーク(Ranking-CNN)を提案する。
Ranking-CNNをよく設計された方法でトレーニングすることにより、巨大なヘイズ画像パッチから、強力なヘイズ関連機能を自動的に学習することができる。
提案手法は, 合成および実世界のベンチマーク画像において, 過去のデハージングアプローチよりも優れていた。
論文 参考訳(メタデータ) (2020-01-15T11:25:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。