論文の概要: Transforming Movie Recommendations with Advanced Machine Learning: A Study of NMF, SVD,and K-Means Clustering
- arxiv url: http://arxiv.org/abs/2407.08916v1
- Date: Fri, 12 Jul 2024 01:26:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 01:16:30.420329
- Title: Transforming Movie Recommendations with Advanced Machine Learning: A Study of NMF, SVD,and K-Means Clustering
- Title(参考訳): 高度な機械学習による映画推薦の変換:NMF,SVD,K-Meansクラスタリングの検討
- Authors: Yubing Yan, Camille Moreau, Zhuoyue Wang, Wenhan Fan, Chengqian Fu,
- Abstract要約: 本研究では,様々な機械学習技術を用いて,ロバストな映画レコメンデーションシステムを開発する。
主な目的は、パーソナライズされた映画レコメンデーションを提供することでユーザーエクスペリエンスを向上させることである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study develops a robust movie recommendation system using various machine learning techniques, including Non- Negative Matrix Factorization (NMF), Truncated Singular Value Decomposition (SVD), and K-Means clustering. The primary objective is to enhance user experience by providing personalized movie recommendations. The research encompasses data preprocessing, model training, and evaluation, highlighting the efficacy of the employed methods. Results indicate that the proposed system achieves high accuracy and relevance in recommendations, making significant contributions to the field of recommendations systems.
- Abstract(参考訳): 本研究では,Non-Negative Matrix Factorization (NMF),Trncated Singular Value Decomposition (SVD),K-Means Clusteringなどの機械学習技術を用いて,ロバストな映画推薦システムを開発した。
主な目的は、パーソナライズされた映画レコメンデーションを提供することでユーザーエクスペリエンスを向上させることである。
この研究は、データ前処理、モデルトレーニング、評価を含み、採用手法の有効性を強調している。
その結果,提案システムはレコメンデーションの精度と妥当性が高く,レコメンデーションシステムの分野に多大な貢献をしていることがわかった。
関連論文リスト
- Generative Large Recommendation Models: Emerging Trends in LLMs for Recommendation [85.52251362906418]
このチュートリアルでは、大規模言語モデル(LLM)を統合するための2つの主要なアプローチを探求する。
これは、最近の進歩、課題、潜在的研究の方向性を含む、生成的な大規模なレコメンデーションモデルの包括的な概要を提供する。
主なトピックは、データ品質、スケーリング法則、ユーザの行動マイニング、トレーニングと推論の効率性である。
論文 参考訳(メタデータ) (2025-02-19T14:48:25Z) - Contrastive Learning for Cold Start Recommendation with Adaptive Feature Fusion [2.2194815687410627]
本稿では,コントラスト学習を統合したコールドスタートレコメンデーションモデルを提案する。
このモデルは適応的特徴選択モジュールを通じて鍵特徴の重みを動的に調整する。
マルチモーダルな特徴融合機構を組み合わせることで、ユーザ属性、アイテムメタ情報、コンテキスト特徴を統合する。
論文 参考訳(メタデータ) (2025-02-05T23:15:31Z) - CF Recommender System Based on Ontology and Nonnegative Matrix Factorization (NMF) [0.0]
この作業は、レコメンダシステムのデータ空間と精度の問題に対処する。
実装されたアプローチは、CF提案の空白度を効果的に削減し、その正確性を改善し、より関連性の高い項目を推奨する。
論文 参考訳(メタデータ) (2024-05-31T14:50:53Z) - Embedding in Recommender Systems: A Survey [67.67966158305603]
重要な側面は、ユーザやアイテムIDといった高次元の離散的な特徴を低次元連続ベクトルに包含する技法である。
埋め込み技術の適用は複雑なエンティティ関係を捉え、かなりの研究を刺激している。
この調査では、協調フィルタリング、自己教師付き学習、グラフベースのテクニックなどの埋め込み手法を取り上げている。
論文 参考訳(メタデータ) (2023-10-28T06:31:06Z) - Impression-Aware Recommender Systems [53.48892326556546]
本稿ではインプレッションを用いたレコメンデーションシステムに関する体系的な文献レビューを行う。
本稿では,印象型レコメンデーションシステムと,印象型レコメンデーションシステムという,パーソナライズされたレコメンデーションのための新しいパラダイムを論じる。
論文 参考訳(メタデータ) (2023-08-15T16:16:02Z) - A Survey on Large Language Models for Recommendation [77.91673633328148]
大規模言語モデル(LLM)は自然言語処理(NLP)の分野で強力なツールとして登場した。
本調査では,これらのモデルを2つの主要なパラダイム(DLLM4Rec)とジェネレーティブLSM4Rec(GLLM4Rec)に分類する。
論文 参考訳(メタデータ) (2023-05-31T13:51:26Z) - RGRecSys: A Toolkit for Robustness Evaluation of Recommender Systems [100.54655931138444]
複数の次元を包含するレコメンダシステムに対して,ロバスト性に関するより包括的視点を提案する。
本稿では、RecSys用のロバストネス評価ツールキットRobustness Gymを紹介し、リコメンダシステムモデルのロバストネスを迅速かつ均一に評価できるようにする。
論文 参考訳(メタデータ) (2022-01-12T10:32:53Z) - A Comprehensive Review on Non-Neural Networks Collaborative Filtering
Recommendation Systems [1.3124513975412255]
協調フィルタリング(CF)は、あるユーザグループの既知の好みを利用して、他のユーザの未知の好みに関する予測とレコメンデーションを行う。
1990年代に初めて導入され、様々なモデルが提案されている。
多くの分野で機械学習技術の成功により、リコメンデーションシステムにおけるそのようなアルゴリズムの適用に重点が置かれている。
論文 参考訳(メタデータ) (2021-06-20T11:13:33Z) - Sequential Recommendation with Self-Attentive Multi-Adversarial Network [101.25533520688654]
逐次レコメンデーションにおける文脈情報の影響を明示的にモデル化するためのMFGAN(Multi-Factor Generative Adversarial Network)を提案する。
当社のフレームワークは,複数種類の因子情報を組み込むことが柔軟であり,各因子が推奨決定にどのように貢献するかを時間とともに追跡することができる。
論文 参考訳(メタデータ) (2020-05-21T12:28:59Z) - Developing a Recommendation Benchmark for MLPerf Training and Inference [16.471395965484145]
我々は、Theerferf Training and Inference Suitesの業界関連レコメンデーションベンチマークを定義することを目指している。
本稿では、パーソナライズされたレコメンデーションシステムのための望ましいモデリング戦略を合成する。
我々はレコメンデーションモデルアーキテクチャとデータセットの望ましい特徴を概説する。
論文 参考訳(メタデータ) (2020-03-16T17:13:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。