LAPT: Label-driven Automated Prompt Tuning for OOD Detection with Vision-Language Models
- URL: http://arxiv.org/abs/2407.08966v1
- Date: Fri, 12 Jul 2024 03:30:53 GMT
- Title: LAPT: Label-driven Automated Prompt Tuning for OOD Detection with Vision-Language Models
- Authors: Yabin Zhang, Wenjie Zhu, Chenhang He, Lei Zhang,
- Abstract summary: Label-driven Automated Prompt Tuning (LAPT) is a novel approach to OOD detection that reduces the need for manual prompt engineering.
We develop distribution-aware prompts with in-distribution (ID) class names and negative labels mined automatically.
LAPT consistently outperforms manually crafted prompts, setting a new standard for OOD detection.
- Score: 17.15755066370757
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Out-of-distribution (OOD) detection is crucial for model reliability, as it identifies samples from unknown classes and reduces errors due to unexpected inputs. Vision-Language Models (VLMs) such as CLIP are emerging as powerful tools for OOD detection by integrating multi-modal information. However, the practical application of such systems is challenged by manual prompt engineering, which demands domain expertise and is sensitive to linguistic nuances. In this paper, we introduce Label-driven Automated Prompt Tuning (LAPT), a novel approach to OOD detection that reduces the need for manual prompt engineering. We develop distribution-aware prompts with in-distribution (ID) class names and negative labels mined automatically. Training samples linked to these class labels are collected autonomously via image synthesis and retrieval methods, allowing for prompt learning without manual effort. We utilize a simple cross-entropy loss for prompt optimization, with cross-modal and cross-distribution mixing strategies to reduce image noise and explore the intermediate space between distributions, respectively. The LAPT framework operates autonomously, requiring only ID class names as input and eliminating the need for manual intervention. With extensive experiments, LAPT consistently outperforms manually crafted prompts, setting a new standard for OOD detection. Moreover, LAPT not only enhances the distinction between ID and OOD samples, but also improves the ID classification accuracy and strengthens the generalization robustness to covariate shifts, resulting in outstanding performance in challenging full-spectrum OOD detection tasks. Codes are available at \url{https://github.com/YBZh/LAPT}.
Related papers
- Diversity-grounded Channel Prototypical Learning for Out-of-Distribution Intent Detection [18.275098909064127]
This study presents a novel fine-tuning framework for large language models (LLMs)
We construct semantic prototypes for each ID class using a diversity-grounded prompt tuning approach.
For a thorough assessment, we benchmark our method against the prevalent fine-tuning approaches.
arXiv Detail & Related papers (2024-09-17T12:07:17Z) - Zero-Shot Out-of-Distribution Detection with Outlier Label Exposure [23.266183020469065]
Outlier Label Exposure (OLE) is an approach to enhance zero-shot OOD detection using auxiliary outlier class labels.
OLE substantially improves detection performance and achieves new state-of-the-art performance in large-scale OOD and hard OOD detection benchmarks.
arXiv Detail & Related papers (2024-06-03T10:07:21Z) - Envisioning Outlier Exposure by Large Language Models for Out-of-Distribution Detection [71.93411099797308]
Out-of-distribution (OOD) samples are crucial when deploying machine learning models in open-world scenarios.
We propose to tackle this constraint by leveraging the expert knowledge and reasoning capability of large language models (LLM) to potential Outlier Exposure, termed EOE.
EOE can be generalized to different tasks, including far, near, and fine-language OOD detection.
EOE achieves state-of-the-art performance across different OOD tasks and can be effectively scaled to the ImageNet-1K dataset.
arXiv Detail & Related papers (2024-06-02T17:09:48Z) - Negative Label Guided OOD Detection with Pretrained Vision-Language Models [96.67087734472912]
Out-of-distribution (OOD) detection aims at identifying samples from unknown classes.
We propose a novel post hoc OOD detection method, called NegLabel, which takes a vast number of negative labels from extensive corpus databases.
arXiv Detail & Related papers (2024-03-29T09:19:52Z) - Out-of-Distribution Detection Using Peer-Class Generated by Large Language Model [0.0]
Out-of-distribution (OOD) detection is a critical task to ensure the reliability and security of machine learning models.
In this paper, a novel method called ODPC is proposed, in which specific prompts to generate OOD peer classes of ID semantics are designed by a large language model.
Experiments on five benchmark datasets show that the method we propose can yield state-of-the-art results.
arXiv Detail & Related papers (2024-03-20T06:04:05Z) - Model Reprogramming Outperforms Fine-tuning on Out-of-distribution Data in Text-Image Encoders [56.47577824219207]
In this paper, we unveil the hidden costs associated with intrusive fine-tuning techniques.
We introduce a new model reprogramming approach for fine-tuning, which we name Reprogrammer.
Our empirical evidence reveals that Reprogrammer is less intrusive and yields superior downstream models.
arXiv Detail & Related papers (2024-03-16T04:19:48Z) - From Global to Local: Multi-scale Out-of-distribution Detection [129.37607313927458]
Out-of-distribution (OOD) detection aims to detect "unknown" data whose labels have not been seen during the in-distribution (ID) training process.
Recent progress in representation learning gives rise to distance-based OOD detection.
We propose Multi-scale OOD DEtection (MODE), a first framework leveraging both global visual information and local region details.
arXiv Detail & Related papers (2023-08-20T11:56:25Z) - A Weakly Supervised Learning Framework for Salient Object Detection via
Hybrid Labels [96.56299163691979]
This paper focuses on a new weakly-supervised salient object detection (SOD) task under hybrid labels.
To address the issues of label noise and quantity imbalance in this task, we design a new pipeline framework with three sophisticated training strategies.
Experiments on five SOD benchmarks show that our method achieves competitive performance against weakly-supervised/unsupervised methods.
arXiv Detail & Related papers (2022-09-07T06:45:39Z) - Supervision Adaptation Balancing In-distribution Generalization and
Out-of-distribution Detection [36.66825830101456]
In-distribution (ID) and out-of-distribution (OOD) samples can lead to textitdistributional vulnerability in deep neural networks.
We introduce a novel textitsupervision adaptation approach to generate adaptive supervision information for OOD samples, making them more compatible with ID samples.
arXiv Detail & Related papers (2022-06-19T11:16:44Z) - Activation to Saliency: Forming High-Quality Labels for Unsupervised
Salient Object Detection [54.92703325989853]
We propose a two-stage Activation-to-Saliency (A2S) framework that effectively generates high-quality saliency cues.
No human annotations are involved in our framework during the whole training process.
Our framework reports significant performance compared with existing USOD methods.
arXiv Detail & Related papers (2021-12-07T11:54:06Z) - Semantically Coherent Out-of-Distribution Detection [26.224146828317277]
Current out-of-distribution (OOD) detection benchmarks are commonly built by defining one dataset as in-distribution (ID) and all others as OOD.
We re-design the benchmarks and propose the semantically coherent out-of-distribution detection (SC-OOD)
Our approach achieves state-of-the-art performance on SC-OOD benchmarks.
arXiv Detail & Related papers (2021-08-26T17:53:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.