論文の概要: Topology-enhanced machine learning model (Top-ML) for anticancer peptide prediction
- arxiv url: http://arxiv.org/abs/2407.08974v1
- Date: Fri, 12 Jul 2024 04:04:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 00:46:38.933434
- Title: Topology-enhanced machine learning model (Top-ML) for anticancer peptide prediction
- Title(参考訳): 抗がんペプチド予測のためのトポロジー強化機械学習モデル(Top-ML)
- Authors: Joshua Zhi En Tan, JunJie Wee, Xue Gong, Kelin Xia,
- Abstract要約: 抗がんペプチド予測のためのトポロジー強化機械学習モデル(Top-ML)を提案する。
我々のTop-MLモデルは、広く使われている2つのAntiCP 2.0ベンチマークデータセットで検証され、最先端のパフォーマンスを達成した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, therapeutic peptides have demonstrated great promise for cancer treatment. To explore powerful anticancer peptides, artificial intelligence (AI)-based approaches have been developed to systematically screen potential candidates. However, the lack of efficient featurization of peptides has become a bottleneck for these machine-learning models. In this paper, we propose a topology-enhanced machine learning model (Top-ML) for anticancer peptide prediction. Our Top-ML employs peptide topological features derived from its sequence "connection" information characterized by vector and spectral descriptors. Our Top-ML model has been validated on two widely used AntiCP 2.0 benchmark datasets and has achieved state-of-the-art performance. Our results highlight the potential of leveraging novel topology-based featurization to accelerate the identification of anticancer peptides.
- Abstract(参考訳): 近年,治療ペプチドは癌治療に大いに期待されている。
強力な抗がんペプチドを探索するために、人工知能(AI)ベースのアプローチが、潜在的な候補を体系的にスクリーニングするために開発されている。
しかし、これらの機械学習モデルでは、ペプチドの効率的な分解の欠如がボトルネックとなっている。
本稿では,抗がんペプチド予測のためのトポロジー強化機械学習モデル(Top-ML)を提案する。
筆者らのTop-MLでは, ベクターおよびスペクトル記述子を特徴とする配列"接続"情報から得られるペプチドトポロジ的特徴を用いている。
我々のTop-MLモデルは、広く使われている2つのAntiCP 2.0ベンチマークデータセットで検証され、最先端のパフォーマンスを達成した。
本研究は,抗がんペプチドの同定を促進するために,新規なトポロジを基盤とした創製の可能性を強調した。
関連論文リスト
- Multi-Peptide: Multimodality Leveraged Language-Graph Learning of Peptide Properties [5.812284760539713]
Multi-Peptideは、トランスフォーマーベースの言語モデルとグラフニューラルネットワーク(GNN)を組み合わせてペプチドの性質を予測する革新的なアプローチである。
溶血性データセットおよび非汚泥性データセットの評価は、多ペプチドの堅牢性を示し、溶血性予測における最先端86.185%の精度を達成する。
本研究は, 生体情報学におけるマルチモーダル学習の可能性を強調し, ペプチドを用いた研究・応用における正確かつ信頼性の高い予測方法を模索する。
論文 参考訳(メタデータ) (2024-07-02T20:13:47Z) - ECC-PolypDet: Enhanced CenterNet with Contrastive Learning for Automatic
Polyp Detection [88.4359020192429]
既存の手法では、計算コストのかかるコンテキストアグリゲーションが伴うか、ポリープの事前モデリングが欠如しているため、難解なケースでは性能が低下する。
本稿では,2段階のトレーニングとエンドツーエンド推論フレームワークである Enhanced CenterNet with Contrastive Learning (ECC-PolypDet) を提案する。
Box-assisted Contrastive Learning (BCL) は, クラス内差を最小限に抑え, 前庭ポリープと背景のクラス間差を最大化するため, 隠れポリープを捕捉する。
微調整段階におけるIoU誘導サンプル再重み付けの導入
論文 参考訳(メタデータ) (2024-01-10T07:03:41Z) - An Efficient Consolidation of Word Embedding and Deep Learning
Techniques for Classifying Anticancer Peptides: FastText+BiLSTM [0.0]
抗がんペプチド(英語: Anticancer peptides、ACP)は、より高い選択性と安全性を有するペプチドである。
近年の科学的進歩はペプチドベースの治療法への関心を生んでいる。
ACPは、正常な細胞に悪影響を及ぼすことなく、目的の細胞を効率的に治療する利点を提供する。
論文 参考訳(メタデータ) (2023-09-21T13:25:11Z) - BeeTLe: A Framework for Linear B-Cell Epitope Prediction and
Classification [0.43512163406551996]
本稿では, 線形B細胞予測と抗体型特異的分類のための, 深層学習に基づく新しいフレームワークを提案する。
そこで本研究では, モデルが抗体の表現を学習するのを助けるために, 固有分解に基づくアミノ酸符号化法を提案する。
最大の公開データベースからキュレートしたデータに対する実験結果から,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2023-09-05T09:18:29Z) - Artificial intelligence-driven antimicrobial peptide discovery [0.0]
抗微生物ペプチド(AMP)は、抗微生物抵抗性に対する有望な薬剤として出現する。
AMPは従来の抗生物質の代替となる。
人工知能(AI)は、差別と生成の両方のアプローチを通じてAMP発見に革命をもたらした。
論文 参考訳(メタデータ) (2023-08-21T14:02:14Z) - Efficient Prediction of Peptide Self-assembly through Sequential and
Graphical Encoding [57.89530563948755]
この研究は、高度なディープラーニングモデルを用いたペプチドエンコーディングのベンチマーク分析を提供する。
等電点や水和自由エネルギーなど、幅広いペプチド関連予測のガイドとして機能する。
論文 参考訳(メタデータ) (2023-07-17T00:43:33Z) - xTrimoABFold: De novo Antibody Structure Prediction without MSA [77.47606749555686]
我々は、抗体配列から抗体構造を予測するために、xTrimoABFoldという新しいモデルを開発した。
CDRにおけるドメイン特異的焦点損失のアンサンブル損失とフレーム整合点損失を最小化することにより,PDBの抗体構造をエンドツーエンドにトレーニングした。
論文 参考訳(メタデータ) (2022-11-30T09:26:08Z) - MOOMIN: Deep Molecular Omics Network for Anti-Cancer Drug Combination
Therapy [2.446672595462589]
本稿では,がん治療における薬物併用の相乗効果を予測できるマルチモーダルグラフニューラルネットワークを提案する。
本モデルでは,薬物とタンパク質の相互作用ネットワークとメタデータに基づいて,薬物のコンテキストを複数スケールで表現する。
このモデルが癌細胞株の組織を広範囲にわたって高い品質で予測できることを実証した。
論文 参考訳(メタデータ) (2021-10-28T13:10:25Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
ヘマトキシリンとエオシン(H&E)で染色した組織学的肺スライドにおける癌病変の自動検出のためのグラフベーススパース成分分析(GS-PCA)ネットワークを提案する。
我々は,SVM K-rasG12D肺がんモデルから得られたH&Eスライダーの精度・リコール率,Fスコア,谷本係数,レシーバ演算子特性(ROC)の曲線下領域を用いて,提案アルゴリズムの性能評価を行った。
論文 参考訳(メタデータ) (2021-10-27T19:28:36Z) - Accelerating Antimicrobial Discovery with Controllable Deep Generative
Models and Molecular Dynamics [109.70543391923344]
CLaSS(Controlled Latent attribute Space Smpling)は、分子の属性制御のための効率的な計算手法である。
深層学習分類器と原子論シミュレーションから得られた新しい特徴を併用して, 生成分子を付加的なキー属性としてスクリーニングする。
提案手法は, 強い広帯域能を有する非毒性抗菌性ペプチド(AMP)を設計するためのものである。
論文 参考訳(メタデータ) (2020-05-22T15:57:58Z) - Ensemble Transfer Learning for the Prediction of Anti-Cancer Drug
Response [49.86828302591469]
本稿では,抗がん剤感受性の予測にトランスファーラーニングを適用した。
我々は、ソースデータセット上で予測モデルをトレーニングし、ターゲットデータセット上でそれを洗練する古典的な転送学習フレームワークを適用した。
アンサンブル転送学習パイプラインは、LightGBMと異なるアーキテクチャを持つ2つのディープニューラルネットワーク(DNN)モデルを使用して実装されている。
論文 参考訳(メタデータ) (2020-05-13T20:29:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。