論文の概要: URRL-IMVC: Unified and Robust Representation Learning for Incomplete Multi-View Clustering
- arxiv url: http://arxiv.org/abs/2407.09120v1
- Date: Fri, 12 Jul 2024 09:35:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-15 23:57:34.223003
- Title: URRL-IMVC: Unified and Robust Representation Learning for Incomplete Multi-View Clustering
- Title(参考訳): URRL-IMVC:不完全なマルチビュークラスタリングのための統一とロバスト表現学習
- Authors: Ge Teng, Ting Mao, Chen Shen, Xiang Tian, Xuesong Liu, Yaowu Chen, Jieping Ye,
- Abstract要約: 不完全なマルチビュークラスタリングのための統一表現学習(URRL-IMVC)を提案する。
URRL-IMVCは、複数のビューや隣接するサンプルからの情報を統合することで、失われた状態を見るのに堅牢な統合埋め込みを直接学習する。
提案するURRL-IMVCフレームワークを様々なベンチマークデータセット上で広範囲に評価し,その最先端性能を実証した。
- 参考スコア(独自算出の注目度): 28.776476995363048
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Incomplete multi-view clustering (IMVC) aims to cluster multi-view data that are only partially available. This poses two main challenges: effectively leveraging multi-view information and mitigating the impact of missing views. Prevailing solutions employ cross-view contrastive learning and missing view recovery techniques. However, they either neglect valuable complementary information by focusing only on consensus between views or provide unreliable recovered views due to the absence of supervision. To address these limitations, we propose a novel Unified and Robust Representation Learning for Incomplete Multi-View Clustering (URRL-IMVC). URRL-IMVC directly learns a unified embedding that is robust to view missing conditions by integrating information from multiple views and neighboring samples. Firstly, to overcome the limitations of cross-view contrastive learning, URRL-IMVC incorporates an attention-based auto-encoder framework to fuse multi-view information and generate unified embeddings. Secondly, URRL-IMVC directly enhances the robustness of the unified embedding against view-missing conditions through KNN imputation and data augmentation techniques, eliminating the need for explicit missing view recovery. Finally, incremental improvements are introduced to further enhance the overall performance, such as the Clustering Module and the customization of the Encoder. We extensively evaluate the proposed URRL-IMVC framework on various benchmark datasets, demonstrating its state-of-the-art performance. Furthermore, comprehensive ablation studies are performed to validate the effectiveness of our design.
- Abstract(参考訳): 不完全なマルチビュークラスタリング(IMVC)は、部分的にしか利用できないマルチビューデータをクラスタリングすることを目的としている。
これは、マルチビュー情報を効果的に活用し、欠落したビューの影響を緩和する、という2つの大きな課題を提起する。
一般的なソリューションでは、クロスビューのコントラスト学習と、ビューリカバリの欠如が採用されている。
しかし、彼らは意見の一致にのみ焦点をあてることで、貴重な補完情報を無視するか、監督が欠如しているため、信頼できない見解を提供するかのいずれかである。
これらの制約に対処するため,不完全なマルチビュークラスタリングのためのUnified and Robust Representation Learning(URRL-IMVC)を提案する。
URRL-IMVCは、複数のビューや隣接するサンプルからの情報を統合することで、失われた状態を見るのに堅牢な統合埋め込みを直接学習する。
第一に、クロスビューコントラスト学習の限界を克服するため、URRL-IMVCはアテンションベースのオートエンコーダフレームワークを導入し、マルチビュー情報を融合し、統合された埋め込みを生成する。
第2に、URRL-IMVCは、KNNの計算とデータ拡張技術により、ビューロス条件に対する統一的な埋め込みの堅牢性を直接的に強化し、明らかに欠落したビューリカバリを不要にする。
最後に、クラスタリングモジュールやエンコーダのカスタマイズなど、全体的なパフォーマンスをさらに向上するために、漸進的な改善が導入されている。
提案するURRL-IMVCフレームワークを様々なベンチマークデータセット上で広範囲に評価し,その最先端性能を実証した。
さらに, 設計の有効性を検証するため, 包括的アブレーション研究を行った。
関連論文リスト
- Partial Multi-View Clustering via Meta-Learning and Contrastive Feature Alignment [13.511433241138702]
部分的マルチビュークラスタリング (PVC) は、実世界のアプリケーションにおけるデータ分析における実用的な研究課題である。
既存のクラスタリング手法は、不完全なビューを効果的に扱うのに苦労し、サブ最適クラスタリング性能に繋がる。
非完全多視点データにおける潜在的特徴の一貫性を最大化することを目的とした、コントラスト学習に基づく新しい双対最適化フレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-14T19:16:01Z) - Discriminative Anchor Learning for Efficient Multi-view Clustering [59.11406089896875]
マルチビュークラスタリング(DALMC)のための識別的アンカー学習を提案する。
元のデータセットに基づいて、識別的なビュー固有の特徴表現を学習する。
これらの表現に基づいて異なるビューからアンカーを構築することで、共有アンカーグラフの品質が向上します。
論文 参考訳(メタデータ) (2024-09-25T13:11:17Z) - A Novel Approach for Effective Multi-View Clustering with
Information-Theoretic Perspective [24.630259061774836]
本研究では,多視点クラスタリングフレームワークを情報理論の観点から検討する,SUMVC(Sufficient Multi-View Clustering)と呼ばれる新しい手法を提案する。
まず,変分解析を用いて一貫した情報を生成する,シンプルで信頼性の高いマルチビュークラスタリング手法SCMVCを開発する。
次に、一貫した情報を強化し、ビュー間の不要な情報を最小限に抑えるのに十分な表現境界を提案する。
論文 参考訳(メタデータ) (2023-09-25T09:41:11Z) - Unpaired Multi-View Graph Clustering with Cross-View Structure Matching [39.310384044597065]
既存のMVCメソッドの多くは、マルチビューデータが完全にペアリングされていると仮定している。
データ通信は、データ破損やセンサーの違いにより、現実世界のアプリケーションでは不完全であることが多い。
本稿では,クロスビュー構造マッチングを用いたパラメータフリーグラフクラスタリングフレームワークUnpaired Multi-view Graph Clusteringフレームワークを提案する。
論文 参考訳(メタデータ) (2023-07-07T09:29:44Z) - Multi-View Class Incremental Learning [57.14644913531313]
マルチビュー学習(MVL)は、下流タスクのパフォーマンスを改善するためにデータセットの複数の視点から情報を統合することで大きな成功を収めている。
本稿では,複数視点クラスインクリメンタルラーニング(MVCIL)と呼ばれる新しいパラダイムについて考察する。
論文 参考訳(メタデータ) (2023-06-16T08:13:41Z) - Incomplete Multi-view Clustering via Diffusion Completion [0.0]
本稿では,不完全なマルチビュークラスタリングフレームワークに組み込まれている不完全なビューを復元する拡散補完法を提案する。
観測可能なビュー情報に基づいて、拡散モデルを用いて、行方不明のビューを復元する。
提案手法は,最先端の手法と比較して,クラスタリング性能が優れている一方で,欠落したビューの回復に有効である。
論文 参考訳(メタデータ) (2023-05-19T07:39:24Z) - Deep Incomplete Multi-view Clustering with Cross-view Partial Sample and
Prototype Alignment [50.82982601256481]
深層不完全なマルチビュークラスタリングのためのクロスビュー部分サンプルとプロトタイプアライメントネットワーク(CPSPAN)を提案する。
従来のコントラストベースの手法とは異なり、インスタンスとインスタンスの対応構築を導くために、ペア観測データアライメントを「プロキシ監視信号」として採用する。
論文 参考訳(メタデータ) (2023-03-28T02:31:57Z) - A Clustering-guided Contrastive Fusion for Multi-view Representation
Learning [7.630965478083513]
本稿では、ビュー固有表現をビュー共通表現に融合する深層融合ネットワークを提案する。
また、ビュー共通表現とビュー固有表現を一致させる非対称なコントラスト戦略を設計する。
不完全な視点では,提案手法は競合相手よりもノイズ干渉に抵抗する。
論文 参考訳(メタデータ) (2022-12-28T07:21:05Z) - Deep Partial Multi-View Learning [94.39367390062831]
クロスパーシャル・マルチビュー・ネットワーク(CPM-Nets)と呼ばれる新しいフレームワークを提案する。
我々はまず、多視点表現に対する完全性と汎用性の形式的な定義を提供する。
そして、理論的に学習された潜在表現の多元性を証明する。
論文 参考訳(メタデータ) (2020-11-12T02:29:29Z) - Agglomerative Neural Networks for Multi-view Clustering [109.55325971050154]
本稿では,最適コンセンサスを近似する凝集分析法を提案する。
本稿では,制約付きラプラシアンランクに基づくANN(Agglomerative Neural Network)を用いて,マルチビューデータをクラスタリングする。
4つの一般的なデータセットに対する最先端のマルチビュークラスタリング手法に対する我々の評価は、ANNの有望なビュー・コンセンサス分析能力を示している。
論文 参考訳(メタデータ) (2020-05-12T05:39:10Z) - Generative Partial Multi-View Clustering [133.36721417531734]
本稿では,不完全なマルチビュー問題に対処するため,GP-MVCと呼ばれる生成的部分的マルチビュークラスタリングモデルを提案する。
まず、マルチビューエンコーダネットワークをトレーニングして、一般的な低次元表現を学習し、次にクラスタリング層を使用して複数のビューをまたいだ一貫したクラスタ構造をキャプチャする。
第2に、他のビューが与える共有表現に基づいて、1つのビュー条件の欠落データを生成するために、ビュー固有の生成敵ネットワークを開発する。
論文 参考訳(メタデータ) (2020-03-29T17:48:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。