The generalized uncertainty principle within the ordinary framework of quantum mechanics
- URL: http://arxiv.org/abs/2407.09123v1
- Date: Fri, 12 Jul 2024 09:37:51 GMT
- Title: The generalized uncertainty principle within the ordinary framework of quantum mechanics
- Authors: Y. V. Przhiyalkovskiy,
- Abstract summary: A proper deformation of the underlying coordinate and momentum commutation relations in quantum mechanics accounts for the influence of gravity on small scales.
Introducing the squared momentum term results in a generalized uncertainty principle, which limits the minimum uncertainty in particle position to the Planck length.
It is shown that the deformed algebra of position and momentum operators can be incorporated into the framework of ordinary quantum mechanics.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A proper deformation of the underlying coordinate and momentum commutation relations in quantum mechanics provides a phenomenological approach to account for the influence of gravity on small scales. Introducing the squared momentum term results in a generalized uncertainty principle, which limits the minimum uncertainty in particle position to the Planck length. However, such a deformation of the commutator significantly changes the formalism, making it separate from the canonical formalism of quantum mechanics. In this study, it is shown that the deformed algebra of position and momentum operators can be incorporated into the framework of ordinary quantum mechanics.
Related papers
- On Some Quantum Correction to the Coulomb Potential in Generalized Uncertainty Principle Approach [0.0]
We consider a modified Schr"odinger equation resulting from a generalized uncertainty principle.
As the resulting equation cannot be solved by common exact approaches, we propose a Bethe ansatz approach.
arXiv Detail & Related papers (2024-01-07T12:07:35Z) - Adherence and violation of the equivalence principle from classical to
quantum mechanics [0.0]
An inhomogeneous gravitational field tidal effects couple the center of mass motion to the quantum fluctuations.
The size of this violation is within sensitivities of current Eotvos and clock-based return time experiments.
arXiv Detail & Related papers (2023-10-13T16:12:31Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Spin operator, Bell nonlocality and Tsirelson bound in quantum-gravity
induced minimal-length quantum mechanics [0.0]
We show that the spin operator acquires a momentum-dependent contribution in quantum mechanics equipped with a minimal length.
Among other consequences, this modification induces a form of quantum nonlocality stronger than the one arising in ordinary quantum mechanics.
arXiv Detail & Related papers (2022-07-21T11:22:33Z) - Correspondence Between the Energy Equipartition Theorem in Classical
Mechanics and its Phase-Space Formulation in Quantum Mechanics [62.997667081978825]
In quantum mechanics, the energy per degree of freedom is not equally distributed.
We show that in the high-temperature regime, the classical result is recovered.
arXiv Detail & Related papers (2022-05-24T20:51:03Z) - Quantum dynamics corresponding to chaotic BKL scenario [62.997667081978825]
Quantization smears the gravitational singularity avoiding its localization in the configuration space.
Results suggest that the generic singularity of general relativity can be avoided at quantum level.
arXiv Detail & Related papers (2022-04-24T13:32:45Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Estimation independence as an axiom for quantum uncertainty [0.0]
We show that a plausible principle of estimation independence, which requires that the estimation of momentum of one system must be independent of the position of another system, singles out the specific forms of the estimator.
arXiv Detail & Related papers (2020-05-12T07:12:17Z) - Multiple uncertainty relation for accelerated quantum information [8.598192865991367]
We demonstrate a relativistic protocol of an uncertainty game in the presence of localized fermionic quantum fields inside cavities.
A novel lower bound for entropic uncertainty relations with multiple quantum memories is given in terms of the Holevo quantity.
arXiv Detail & Related papers (2020-04-21T03:29:39Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z) - Entropic Uncertainty Relations and the Quantum-to-Classical transition [77.34726150561087]
We aim to shed some light on the quantum-to-classical transition as seen through the analysis of uncertainty relations.
We employ entropic uncertainty relations to show that it is only by the inclusion of imprecision in our model of macroscopic measurements that we can prepare a system with two simultaneously well-defined quantities.
arXiv Detail & Related papers (2020-03-04T14:01:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.