論文の概要: Exploring the Effectiveness of Methods for Persona Extraction
- arxiv url: http://arxiv.org/abs/2407.09181v1
- Date: Fri, 12 Jul 2024 11:30:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-15 23:47:49.946903
- Title: Exploring the Effectiveness of Methods for Persona Extraction
- Title(参考訳): ペルソナ抽出法の有効性を探る
- Authors: Konstantin Zaitsev,
- Abstract要約: 本稿では,対話参加者に関する情報を抽出し,そのパフォーマンスをロシア語で評価する手法について検討する。
このタスクのモデルをトレーニングするために、Multi-Session Chatデータセットは複数の翻訳モデルを使用してロシア語に翻訳された。
抽出モデルの有効性を評価するために,Fスコアの概念に基づく計量を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The paper presents a study of methods for extracting information about dialogue participants and evaluating their performance in Russian. To train models for this task, the Multi-Session Chat dataset was translated into Russian using multiple translation models, resulting in improved data quality. A metric based on the F-score concept is presented to evaluate the effectiveness of the extraction models. The metric uses a trained classifier to identify the dialogue participant to whom the persona belongs. Experiments were conducted on MBart, FRED-T5, Starling-7B, which is based on the Mistral, and Encoder2Encoder models. The results demonstrated that all models exhibited an insufficient level of recall in the persona extraction task. The incorporation of the NCE Loss improved the model's precision at the expense of its recall. Furthermore, increasing the model's size led to enhanced extraction of personas.
- Abstract(参考訳): 本稿では,対話参加者に関する情報を抽出し,そのパフォーマンスをロシア語で評価する手法について検討する。
このタスクのモデルをトレーニングするために、Multi-Session Chatデータセットは複数の翻訳モデルを使用してロシア語に変換され、データ品質が改善された。
抽出モデルの有効性を評価するために,Fスコアの概念に基づく計量を示す。
メトリクスは、訓練された分類器を使用して、そのペルソナが属する対話参加者を特定する。
MBart、FRED-T5、Starling-7BはMistral、Encoder2Encoderモデルをベースにしている。
その結果, すべてのモデルにおいてペルソナ抽出作業におけるリコールレベルが不十分であることが判明した。
NCEロスの組み入れにより、リコールを犠牲にしてモデルの精度が向上した。
さらに、モデルのサイズが大きくなると、ペルソナの抽出が強化された。
関連論文リスト
- Weak Reward Model Transforms Generative Models into Robust Causal Event Extraction Systems [17.10762463903638]
我々は人的評価を近似するために評価モデルを訓練し、高い合意を得る。
そこで本研究では,アノテートデータの一部を用いて評価モデルを訓練する弱強監督手法を提案する。
論文 参考訳(メタデータ) (2024-06-26T10:48:14Z) - Secrets of RLHF in Large Language Models Part II: Reward Modeling [134.97964938009588]
本稿では,データセットにおける不正確で曖昧な嗜好の影響を軽減するために,一連の新しい手法を紹介する。
また、選択された応答と拒否された応答を区別する報酬モデルの有用性を高めるために、対照的な学習を導入する。
論文 参考訳(メタデータ) (2024-01-11T17:56:59Z) - Training Language Models with Language Feedback at Scale [50.70091340506957]
我々は、より情報的な言語フィードバックを利用する新しいアプローチであるLanguage Feedback (ILF)から学習を導入する。
ILFは3つのステップから成り、まず言語モデルを入力に条件付けし、最初のLM出力を出力し、改善を生成する。
理論的には、ILFは人間からのフィードバックによる強化学習と同様、ベイズ推論とみなすことができる。
論文 参考訳(メタデータ) (2023-03-28T17:04:15Z) - Discover, Explanation, Improvement: An Automatic Slice Detection
Framework for Natural Language Processing [72.14557106085284]
スライス検出モデル(SDM)は、データポイントの低パフォーマンスなグループを自動的に識別する。
本稿では,NLPタスクの分類のための "Discover, Explain, improve (DEIM)" というベンチマークを提案する。
評価の結果,Edisaは情報的セマンティックな特徴を持つ誤り発生データポイントを正確に選択できることがわかった。
論文 参考訳(メタデータ) (2022-11-08T19:00:00Z) - Open-vocabulary Semantic Segmentation with Frozen Vision-Language Models [39.479912987123214]
自己指導型学習は、幅広い視覚的・言語的理解タスクを解く顕著な能力を示した。
Fusionerは軽量なトランスフォーマーベースの融合モジュールで、凍結した視覚表現と言語概念をペアリングする。
提案手法は,任意の視覚モデルと言語モデル,あるいはユニモーダルデータのコーパス上で事前学習したモデルに対して有効であることを示す。
論文 参考訳(メタデータ) (2022-10-27T02:57:26Z) - The Effectiveness of Masked Language Modeling and Adapters for Factual
Knowledge Injection [0.0]
マスク付き言語モデリングの目的を用いて,ConceptNetナレッジグラフの一部にアダプタモジュールをトレーニングする。
LAMAプローブを用いた一連の探査実験により,本手法の有効性を検証した。
論文 参考訳(メタデータ) (2022-10-03T13:08:09Z) - An Empirical Investigation of Commonsense Self-Supervision with
Knowledge Graphs [67.23285413610243]
大規模知識グラフから抽出した情報に基づく自己監督は、言語モデルの一般化を改善することが示されている。
本研究では,言語モデルに適用可能な合成データを生成するための知識サンプリング戦略とサイズの影響について検討する。
論文 参考訳(メタデータ) (2022-05-21T19:49:04Z) - Feeding What You Need by Understanding What You Learned [54.400455868448695]
Machine Reading (MRC)は、与えられたテキストパスを理解し、それに基づいて質問に答える機能を明らかにする。
MRCの既存の研究は、Exact Matchのようなメトリクスによって評価されたパフォーマンスを改善するために、大規模なモデルとコーパスに大きく依存している。
モデル機能とデータ特性の深い理解は、適切なトレーニングデータでモデルをフィードするのに役立ちます。
論文 参考訳(メタデータ) (2022-03-05T14:15:59Z) - Explain, Edit, and Understand: Rethinking User Study Design for
Evaluating Model Explanations [97.91630330328815]
我々はクラウドソーシング研究を行い、真偽のホテルレビューと偽のホテルレビューを区別するために訓練された詐欺検出モデルと対話する。
単語の線形バッグモデルでは、トレーニング中に特徴係数にアクセスした参加者は、非説明制御と比較して、テストフェーズにおいてモデルの信頼性が大幅に低下する可能性があることを観察する。
論文 参考訳(メタデータ) (2021-12-17T18:29:56Z) - Learning Compact Metrics for MT [21.408684470261342]
最先端多言語モデルであるRemBERTを用いて,多言語性とモデルキャパシティのトレードオフについて検討する。
モデルのサイズが実際に言語間移動のボトルネックであることを示し、蒸留がこのボトルネックにどのように対処できるかを示す。
提案手法は,バニラ微調整よりも最大10.5%向上し,パラメータの3分の1しか使用せず,RemBERTの性能の92.6%に達する。
論文 参考訳(メタデータ) (2021-10-12T20:39:35Z) - Training Data Leakage Analysis in Language Models [6.843491191969066]
本稿では,強大かつ現実的な脅威モデルの下で漏洩する可能性のあるトレーニングデータ中のユーザコンテンツを識別する手法を提案する。
本研究では,トレーニングデータに固有の文断片を生成するモデルの能力を測定することにより,ユーザレベルのデータ漏洩を定量化する2つの指標を提案する。
論文 参考訳(メタデータ) (2021-01-14T00:57:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。