Towards Personalised Patient Risk Prediction Using Temporal Hospital Data Trajectories
- URL: http://arxiv.org/abs/2407.09373v1
- Date: Fri, 12 Jul 2024 15:53:26 GMT
- Title: Towards Personalised Patient Risk Prediction Using Temporal Hospital Data Trajectories
- Authors: Thea Barnes, Enrico Werner, Jeffrey N. Clark, Raul Santos-Rodriguez,
- Abstract summary: We propose a pipeline that groups intensive care unit patients by the trajectories of observations data throughout their stay.
Applying the pipeline to data from just the first four hours of each ICU stay assigns the majority of patients to the same cluster as when the entire stay duration is considered.
- Score: 0.9545101073027095
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantifying a patient's health status provides clinicians with insight into patient risk, and the ability to better triage and manage resources. Early Warning Scores (EWS) are widely deployed to measure overall health status, and risk of adverse outcomes, in hospital patients. However, current EWS are limited both by their lack of personalisation and use of static observations. We propose a pipeline that groups intensive care unit patients by the trajectories of observations data throughout their stay as a basis for the development of personalised risk predictions. Feature importance is considered to provide model explainability. Using the MIMIC-IV dataset, six clusters were identified, capturing differences in disease codes, observations, lengths of admissions and outcomes. Applying the pipeline to data from just the first four hours of each ICU stay assigns the majority of patients to the same cluster as when the entire stay duration is considered. In-hospital mortality prediction models trained on individual clusters had higher F1 score performance in five of the six clusters when compared against the unclustered patient cohort. The pipeline could form the basis of a clinical decision support tool, working to improve the clinical characterisation of risk groups and the early detection of patient deterioration.
Related papers
- Evaluating the Fairness of the MIMIC-IV Dataset and a Baseline
Algorithm: Application to the ICU Length of Stay Prediction [65.268245109828]
This paper uses the MIMIC-IV dataset to examine the fairness and bias in an XGBoost binary classification model predicting the ICU length of stay.
The research reveals class imbalances in the dataset across demographic attributes and employs data preprocessing and feature extraction.
The paper concludes with recommendations for fairness-aware machine learning techniques for mitigating biases and the need for collaborative efforts among healthcare professionals and data scientists.
arXiv Detail & Related papers (2023-12-31T16:01:48Z) - Event-Based Contrastive Learning for Medical Time Series [11.696805672885798]
Event-Based Contrastive Learning (EBCL) is a method for learning embeddings of heterogeneous patient data.
We demonstrate that EBCL can be used to construct models that yield improved performance on important downstream tasks.
arXiv Detail & Related papers (2023-12-16T03:50:24Z) - Contrastive Learning-based Imputation-Prediction Networks for
In-hospital Mortality Risk Modeling using EHRs [9.578930989075035]
This paper presents a contrastive learning-based imputation-prediction network for predicting in-hospital mortality risks using EHR data.
Our approach introduces graph analysis-based patient stratification modeling in the imputation process to group similar patients.
Experiments on two real-world EHR datasets show that our approach outperforms the state-of-the-art approaches in both imputation and prediction tasks.
arXiv Detail & Related papers (2023-08-19T03:24:34Z) - Classifying the evolution of COVID-19 severity on patients with combined
dynamic Bayesian networks and neural networks [1.9766522384767222]
Knowing beforehand the severity of a patients illness can improve its treatment and the organization of resources.
We illustrate this issue in a dataset consistent of Spanish COVID-19 patients from the sixth epidemic wave.
We combine the use of dynamic Bayesian networks, to forecast the vital signs and the blood analysis results of patients over the next 40 hours, and neural networks, to evaluate the severity of a patients disease in that interval of time.
arXiv Detail & Related papers (2023-03-10T15:05:32Z) - Mortality Prediction with Adaptive Feature Importance Recalibration for
Peritoneal Dialysis Patients: a deep-learning-based study on a real-world
longitudinal follow-up dataset [19.7915762858399]
Peritoneal Dialysis (PD) is one of the most widely used life-supporting therapies for patients with End-Stage Renal Disease (ESRD)
Here, our objective is to develop a deep learning model for a real-time, individualized, and interpretable mortality prediction model - AICare.
This study has collected 13,091 clinical follow-up visits and demographic data of 656 PD patients.
arXiv Detail & Related papers (2023-01-17T13:17:54Z) - Predicting Patient Readmission Risk from Medical Text via Knowledge
Graph Enhanced Multiview Graph Convolution [67.72545656557858]
We propose a new method that uses medical text of Electronic Health Records for prediction.
We represent discharge summaries of patients with multiview graphs enhanced by an external knowledge graph.
Experimental results prove the effectiveness of our method, yielding state-of-the-art performance.
arXiv Detail & Related papers (2021-12-19T01:45:57Z) - Optimal discharge of patients from intensive care via a data-driven
policy learning framework [58.720142291102135]
It is important that the patient discharge task addresses the nuanced trade-off between decreasing a patient's length of stay and the risk of readmission or even death following the discharge decision.
This work introduces an end-to-end general framework for capturing this trade-off to recommend optimal discharge timing decisions.
A data-driven approach is used to derive a parsimonious, discrete state space representation that captures a patient's physiological condition.
arXiv Detail & Related papers (2021-12-17T04:39:33Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - A Knowledge Distillation Ensemble Framework for Predicting Short and
Long-term Hospitalisation Outcomes from Electronic Health Records Data [5.844828229178025]
Existing outcome prediction models suffer from a low recall of infrequent positive outcomes.
We present a highly-scalable and robust machine learning framework to automatically predict adversity represented by mortality and ICU admission.
arXiv Detail & Related papers (2020-11-18T15:56:28Z) - Temporal Phenotyping using Deep Predictive Clustering of Disease
Progression [97.88605060346455]
We develop a deep learning approach for clustering time-series data, where each cluster comprises patients who share similar future outcomes of interest.
Experiments on two real-world datasets show that our model achieves superior clustering performance over state-of-the-art benchmarks.
arXiv Detail & Related papers (2020-06-15T20:48:43Z) - Predictive Modeling of ICU Healthcare-Associated Infections from
Imbalanced Data. Using Ensembles and a Clustering-Based Undersampling
Approach [55.41644538483948]
This work is focused on both the identification of risk factors and the prediction of healthcare-associated infections in intensive-care units.
The aim is to support decision making addressed at reducing the incidence rate of infections.
arXiv Detail & Related papers (2020-05-07T16:13:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.