論文の概要: Radiance Fields from Photons
- arxiv url: http://arxiv.org/abs/2407.09386v1
- Date: Fri, 12 Jul 2024 16:06:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-15 22:48:56.066292
- Title: Radiance Fields from Photons
- Title(参考訳): 光子からの放射場
- Authors: Sacha Jungerman, Mohit Gupta,
- Abstract要約: 単一光子カメラ(SPC)を用いて個々の光子の粒度を学習する神経放射場である量子放射場を導入する。
シミュレーションとプロトタイプのSPCハードウェア,高速動作下での高忠実度再構成,低光域,超ダイナミックレンジ設定による実演を行った。
- 参考スコア(独自算出の注目度): 18.15183252935672
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural radiance fields, or NeRFs, have become the de facto approach for high-quality view synthesis from a collection of images captured from multiple viewpoints. However, many issues remain when capturing images in-the-wild under challenging conditions, such as low light, high dynamic range, or rapid motion leading to smeared reconstructions with noticeable artifacts. In this work, we introduce quanta radiance fields, a novel class of neural radiance fields that are trained at the granularity of individual photons using single-photon cameras (SPCs). We develop theory and practical computational techniques for building radiance fields and estimating dense camera poses from unconventional, stochastic, and high-speed binary frame sequences captured by SPCs. We demonstrate, both via simulations and a SPC hardware prototype, high-fidelity reconstructions under high-speed motion, in low light, and for extreme dynamic range settings.
- Abstract(参考訳): ニューラル放射場(NeRF)は、複数の視点から捉えた画像の集合から高品質なビュー合成を行うデファクトアプローチとなっている。
しかし、低照度、高ダイナミックレンジ、あるいは急激な動きなどの困難な条件下で画像が撮影される際には、顕著な人工物によるスミアドリコンストラクションが生じるなど、多くの問題が残っている。
本研究では、単一光子カメラ(SPC)を用いて個々の光子の粒度を学習する新しい神経放射場である量子放射場を紹介する。
本研究では,SPCが捉えた非従来的,確率的,高速なバイナリフレーム列から高密度カメラポーズを推定し,放射場を構築するための理論および実用的な計算手法を開発した。
シミュレーションとSPCハードウェアのプロトタイプ,高速動作下での高忠実度再構成,低光域,超ダイナミックレンジ設定による実演を行った。
関連論文リスト
- BRDF-NeRF: Neural Radiance Fields with Optical Satellite Images and BRDF Modelling [0.0]
本稿では,Rahman-Pinty-Verstraete (RPV) BRDFモデルを用いたBRDF-NeRFを提案する。
BRDF-NeRFは目に見えない角度から新しいビューを合成し、高品質なデジタル表面モデルを生成する。
論文 参考訳(メタデータ) (2024-09-18T14:28:52Z) - Cinematic Gaussians: Real-Time HDR Radiance Fields with Depth of Field [23.92087253022495]
放射場法は、多視点写真から複雑なシーンを再構成する際の技法の状態を表現している。
ピンホールカメラモデルへの依存は、すべてのシーン要素が入力画像に集中していると仮定し、実用的な課題を提示し、新規な視点合成において再焦点を複雑にする。
様々な露光時間,開口の放射率,焦点距離を多視点LDR画像を用いて高ダイナミックレンジシーンを再構成する3Dガウススメッティングに基づく軽量解析手法を提案する。
論文 参考訳(メタデータ) (2024-06-11T15:00:24Z) - Pano-NeRF: Synthesizing High Dynamic Range Novel Views with Geometry
from Sparse Low Dynamic Range Panoramic Images [82.1477261107279]
そこで本研究では,Sparse LDRパノラマ画像からの照射場を用いて,忠実な幾何復元のための観測回数を増やすことを提案する。
実験により、照射場は幾何復元とHDR再構成の両方において最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2023-12-26T08:10:22Z) - LDM-ISP: Enhancing Neural ISP for Low Light with Latent Diffusion Models [54.93010869546011]
本稿では,事前学習した潜伏拡散モデルを用いて,超低照度画像の高精細化のためのニューラルISPを実現することを提案する。
具体的には、RAWドメイン上で動作するために事前訓練された潜在拡散モデルを調整するために、軽量なテーミングモジュールのセットをトレーニングする。
遅延拡散モデルにおけるUNet復調と復号化の異なる役割を観察し、低照度画像強調タスクを遅延空間低周波コンテンツ生成と復号位相高周波ディテール保守に分解するきっかけとなる。
論文 参考訳(メタデータ) (2023-12-02T04:31:51Z) - Panoramas from Photons [22.437940699523082]
低光域や高ダイナミックレンジといった困難な条件下での極端なシーンの動きを推定できる手法を提案する。
本手法は, ファクト後のフレームを階層的にグループ化し, 集約することに依存する。
高速動作と極低光下での高画質パノラマの創出と,カスタム単光子カメラの試作による超高分解能化を実証した。
論文 参考訳(メタデータ) (2023-09-07T16:07:31Z) - TensoIR: Tensorial Inverse Rendering [51.57268311847087]
テンソルIRはテンソル分解とニューラルフィールドに基づく新しい逆レンダリング手法である。
TensoRFは、放射場モデリングのための最先端のアプローチである。
論文 参考訳(メタデータ) (2023-04-24T21:39:13Z) - Neural Fields meet Explicit Geometric Representation for Inverse
Rendering of Urban Scenes [62.769186261245416]
本稿では,大都市におけるシーン形状,空間変化材料,HDR照明を,任意の深さで描画したRGB画像の集合から共同で再構成できる新しい逆レンダリングフレームワークを提案する。
具体的には、第1の光線を考慮に入れ、第2の光線をモデリングするために、明示的なメッシュ(基礎となるニューラルネットワークから再構成)を用いて、キャストシャドウのような高次照明効果を発生させる。
論文 参考訳(メタデータ) (2023-04-06T17:51:54Z) - Progressively Optimized Local Radiance Fields for Robust View Synthesis [76.55036080270347]
本稿では,1つのカジュアルな映像から大規模シーンのラディアンス場を再構成するアルゴリズムを提案する。
未知のポーズを扱うために、カメラのポーズと放射場を漸進的に推定する。
大規模な非有界シーンを扱うために、時間窓内にフレームで訓練された新しい局所放射場を動的に割り当てる。
論文 参考訳(メタデータ) (2023-03-24T04:03:55Z) - High Dynamic Range and Super-Resolution from Raw Image Bursts [52.341483902624006]
本稿では,露光ブラケット付きハンドヘルドカメラで撮影した原写真からの高解像度・高ダイナミックレンジカラー画像の再構成について紹介する。
提案アルゴリズムは,画像復元における最先端の学習手法と比較して,メモリ要求の少ない高速なアルゴリズムである。
実験では、ハンドヘルドカメラで野生で撮影された実際の写真に最大4ドル(約4,800円)の超高解像度な要素で優れた性能を示す。
論文 参考訳(メタデータ) (2022-07-29T13:31:28Z) - Photon-Starved Scene Inference using Single Photon Cameras [14.121328731553868]
本稿では,PPPレベルの広い範囲にまたがる高SNR画像の集合体として,光子スケール空間を提案する。
特徴表現空間において、異なる照明レベルの画像を互いに近接させる訓練手法を開発した。
提案手法に基づいて,SPADカメラを用いたシミュレーションおよび実実験により,各種推論タスクの高性能化を実証する。
論文 参考訳(メタデータ) (2021-07-23T02:27:03Z) - Quanta Burst Photography [15.722085082004934]
単光子アバランシェダイオード(SPADs)は、個々の入射光を検出できる新しいセンサー技術である。
本研究では,SPCを受動撮像装置として活用した量子バースト撮影技術について述べる。
論文 参考訳(メタデータ) (2020-06-21T16:20:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。