論文の概要: Mitigating Entity-Level Hallucination in Large Language Models
- arxiv url: http://arxiv.org/abs/2407.09417v1
- Date: Fri, 12 Jul 2024 16:47:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-15 22:48:56.042845
- Title: Mitigating Entity-Level Hallucination in Large Language Models
- Title(参考訳): 大規模言語モデルにおけるエンティティレベル幻覚の緩和
- Authors: Weihang Su, Yichen Tang, Qingyao Ai, Changyue Wang, Zhijing Wu, Yiqun Liu,
- Abstract要約: 本稿では,大規模言語モデル(LLM)における幻覚の検出・緩和手法として,幻覚検出(DRAD)に基づく動的検索拡張を提案する。
実験の結果,LDMにおける幻覚の検出と緩和の両面において,DRADは優れた性能を示した。
- 参考スコア(独自算出の注目度): 11.872916697604278
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The emergence of Large Language Models (LLMs) has revolutionized how users access information, shifting from traditional search engines to direct question-and-answer interactions with LLMs. However, the widespread adoption of LLMs has revealed a significant challenge known as hallucination, wherein LLMs generate coherent yet factually inaccurate responses. This hallucination phenomenon has led to users' distrust in information retrieval systems based on LLMs. To tackle this challenge, this paper proposes Dynamic Retrieval Augmentation based on hallucination Detection (DRAD) as a novel method to detect and mitigate hallucinations in LLMs. DRAD improves upon traditional retrieval augmentation by dynamically adapting the retrieval process based on real-time hallucination detection. It features two main components: Real-time Hallucination Detection (RHD) for identifying potential hallucinations without external models, and Self-correction based on External Knowledge (SEK) for correcting these errors using external knowledge. Experiment results show that DRAD demonstrates superior performance in both detecting and mitigating hallucinations in LLMs. All of our code and data are open-sourced at https://github.com/oneal2000/EntityHallucination.
- Abstract(参考訳): LLM(Large Language Models)の出現は、ユーザが情報にアクセスする方法に革命をもたらした。
しかし、LLMが広く採用されていることで、幻覚と呼ばれる重要な課題が明らかになってきており、LLMはコヒーレントかつ事実的に不正確な応答を生成する。
この幻覚現象は,LSMに基づく情報検索システムにおける利用者の不信を引き起こしている。
そこで本研究では,LLMにおける幻覚の検出・緩和手法として,幻覚検出(DRAD)に基づく動的検索拡張を提案する。
DRADは、リアルタイム幻覚検出に基づいて、検索プロセスを動的に適応させることにより、従来の検索拡張を改善する。
外部モデルを持たない潜在的幻覚を識別するためのリアルタイム幻覚検出(RHD)と、外部知識を用いてこれらのエラーを修正するための外部知識に基づく自己補正(SEK)である。
実験の結果,LDMにおける幻覚の検出と緩和の両面において,DRADは優れた性能を示した。
すべてのコードとデータはhttps://github.com/oneal2000/EntityHallucination.comでオープンソース化されています。
関連論文リスト
- Hallucination Detection: Robustly Discerning Reliable Answers in Large Language Models [70.19081534515371]
大規模言語モデル(LLM)は様々な自然言語処理タスクで広く採用されている。
それらは、入力源から逸脱する不信または矛盾したコンテンツを生成し、深刻な結果をもたらす。
本稿では,LLMの生成した回答の幻覚を効果的に検出するために,RelDという頑健な識別器を提案する。
論文 参考訳(メタデータ) (2024-07-04T18:47:42Z) - Detecting and Mitigating Hallucination in Large Vision Language Models via Fine-Grained AI Feedback [48.065569871444275]
我々は,LVLM(Large Vision Language Models)における幻覚の検出と緩和について,きめ細かいAIフィードバックを用いて提案する。
プロプライエタリモデルによる小型幻覚アノテーションデータセットを生成する。
そこで本研究では,幻覚緩和モデルの訓練のための選好データセットを自動構築する検出テーマ書き換えパイプラインを提案する。
論文 参考訳(メタデータ) (2024-04-22T14:46:10Z) - Exploring and Evaluating Hallucinations in LLM-Powered Code Generation [14.438161741833687]
LLM(Large Language Models)は、ユーザの意図から逸脱した出力を生成し、内部的不整合を示すか、事実的知識と不整合を示す。
既存の研究は主に、自然言語生成の分野における幻覚の投資に重点を置いている。
我々は,LLM生成コードのテーマ解析を行い,その内に存在する幻覚を要約し,分類する。
幻覚認識におけるLLMの性能評価のためのベンチマークであるHaluCodeを提案する。
論文 参考訳(メタデータ) (2024-04-01T07:31:45Z) - Retrieve Only When It Needs: Adaptive Retrieval Augmentation for
Hallucination Mitigation in Large Language Models [73.93616728895401]
幻覚は、大規模言語モデル(LLM)の実践的実装において重要な課題となる。
本稿では,幻覚に対処するための選択的検索拡張プロセスにより,Lowenを改良する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2024-02-16T11:55:40Z) - HalluciDoctor: Mitigating Hallucinatory Toxicity in Visual Instruction Data [102.56792377624927]
機械生成データに固有の幻覚は未発見のままである。
本稿では,クロスチェックパラダイムに基づく新しい幻覚検出・除去フレームワークであるHaluciDoctorを提案する。
LLaVAに比べて44.6%の幻覚を緩和し,競争性能を維持した。
論文 参考訳(メタデータ) (2023-11-22T04:52:58Z) - AutoHall: Automated Hallucination Dataset Generation for Large Language Models [56.92068213969036]
本稿では,AutoHallと呼ばれる既存のファクトチェックデータセットに基づいて,モデル固有の幻覚データセットを自動的に構築する手法を提案する。
また,自己コントラディションに基づくゼロリソース・ブラックボックス幻覚検出手法を提案する。
論文 参考訳(メタデータ) (2023-09-30T05:20:02Z) - Siren's Song in the AI Ocean: A Survey on Hallucination in Large
Language Models [116.01843550398183]
大規模言語モデル(LLM)は、様々な下流タスクで顕著な機能を示している。
LLMは時折、ユーザ入力から分岐するコンテンツを生成し、以前生成されたコンテキストと矛盾する。
論文 参考訳(メタデータ) (2023-09-03T16:56:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。