A Deep Learning Framework for Three Dimensional Shape Reconstruction from Phaseless Acoustic Scattering Far-field Data
- URL: http://arxiv.org/abs/2407.09525v1
- Date: Mon, 24 Jun 2024 14:58:49 GMT
- Title: A Deep Learning Framework for Three Dimensional Shape Reconstruction from Phaseless Acoustic Scattering Far-field Data
- Authors: Doga Dikbayir, Abdel Alsnayyan, Vishnu Naresh Boddeti, Balasubramaniam Shanker, Hasan Metin Aktulga,
- Abstract summary: We develop a deep learning framework for shape reconstruction using limited information with single incident wave, single frequency, and phase-less far-field data.
This is done by (a) using a compact probabilistic shape latent space, learned by a 3D variational auto-encoder, and (b) a convolutional neural network trained to map the acoustic scattering information to this shape representation.
The proposed framework is evaluated on a synthetic 3D dataset, as well as ShapeNet, a popular 3D shape recognition dataset.
- Score: 11.588406765923999
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The inverse scattering problem is of critical importance in a number of fields, including medical imaging, sonar, sensing, non-destructive evaluation, and several others. The problem of interest can vary from detecting the shape to the constitutive properties of the obstacle. The challenge in both is that this problem is ill-posed, more so when there is limited information. That said, significant effort has been expended over the years in developing solutions to this problem. Here, we use a different approach, one that is founded on data. Specifically, we develop a deep learning framework for shape reconstruction using limited information with single incident wave, single frequency, and phase-less far-field data. This is done by (a) using a compact probabilistic shape latent space, learned by a 3D variational auto-encoder, and (b) a convolutional neural network trained to map the acoustic scattering information to this shape representation. The proposed framework is evaluated on a synthetic 3D particle dataset, as well as ShapeNet, a popular 3D shape recognition dataset. As demonstrated via a number of results, the proposed method is able to produce accurate reconstructions for large batches of complex scatterer shapes (such as airplanes and automobiles), despite the significant variation present within the data.
Related papers
- 3D Adversarial Augmentations for Robust Out-of-Domain Predictions [115.74319739738571]
We focus on improving the generalization to out-of-domain data.
We learn a set of vectors that deform the objects in an adversarial fashion.
We perform adversarial augmentation by applying the learned sample-independent vectors to the available objects when training a model.
arXiv Detail & Related papers (2023-08-29T17:58:55Z) - Multi-view 3D Object Reconstruction and Uncertainty Modelling with
Neural Shape Prior [9.716201630968433]
3D object reconstruction is important for semantic scene understanding.
It is challenging to reconstruct detailed 3D shapes from monocular images directly due to a lack of depth information, occlusion and noise.
We tackle this problem by leveraging a neural object representation which learns an object shape distribution from large dataset of 3d object models and maps it into a latent space.
We propose a method to model uncertainty as part of the representation and define an uncertainty-aware encoder which generates latent codes with uncertainty directly from individual input images.
arXiv Detail & Related papers (2023-06-17T03:25:13Z) - OReX: Object Reconstruction from Planar Cross-sections Using Neural
Fields [10.862993171454685]
OReX is a method for 3D shape reconstruction from slices alone, featuring a Neural Field gradients as the prior.
A modest neural network is trained on the input planes to return an inside/outside estimate for a given 3D coordinate, yielding a powerful prior that induces smoothness and self-similarities.
We offer an iterative estimation architecture and a hierarchical input sampling scheme that encourage coarse-to-fine training, allowing the training process to focus on high frequencies at later stages.
arXiv Detail & Related papers (2022-11-23T11:44:35Z) - Uncertainty Guided Policy for Active Robotic 3D Reconstruction using
Neural Radiance Fields [82.21033337949757]
This paper introduces a ray-based volumetric uncertainty estimator, which computes the entropy of the weight distribution of the color samples along each ray of the object's implicit neural representation.
We show that it is possible to infer the uncertainty of the underlying 3D geometry given a novel view with the proposed estimator.
We present a next-best-view selection policy guided by the ray-based volumetric uncertainty in neural radiance fields-based representations.
arXiv Detail & Related papers (2022-09-17T21:28:57Z) - Secrets of 3D Implicit Object Shape Reconstruction in the Wild [92.5554695397653]
Reconstructing high-fidelity 3D objects from sparse, partial observation is crucial for various applications in computer vision, robotics, and graphics.
Recent neural implicit modeling methods show promising results on synthetic or dense datasets.
But, they perform poorly on real-world data that is sparse and noisy.
This paper analyzes the root cause of such deficient performance of a popular neural implicit model.
arXiv Detail & Related papers (2021-01-18T03:24:48Z) - Depth Completion using Piecewise Planar Model [94.0808155168311]
A depth map can be represented by a set of learned bases and can be efficiently solved in a closed form solution.
However, one issue with this method is that it may create artifacts when colour boundaries are inconsistent with depth boundaries.
We enforce a more strict model in depth recovery: a piece-wise planar model.
arXiv Detail & Related papers (2020-12-06T07:11:46Z) - DEF: Deep Estimation of Sharp Geometric Features in 3D Shapes [43.853000396885626]
We propose a learning-based framework for predicting sharp geometric features in sampled 3D shapes.
By fusing the result of individual patches, we can process large 3D models, which are impossible to process for existing data-driven methods.
arXiv Detail & Related papers (2020-11-30T18:21:00Z) - DmifNet:3D Shape Reconstruction Based on Dynamic Multi-Branch
Information Fusion [14.585272577456472]
3D object reconstruction from a single-view image is a long-standing challenging problem.
Previous work was difficult to accurately reconstruct 3D shapes with a complex topology which has rich details at the edges and corners.
We propose a Dynamic Multi-branch Information Fusion Network (DmifNet) which can recover a high-fidelity 3D shape of arbitrary topology from a 2D image.
arXiv Detail & Related papers (2020-11-21T11:31:27Z) - Prediction of Object Geometry from Acoustic Scattering Using
Convolutional Neural Networks [8.067201256886733]
The present work proposes to infer object geometry from scattering features by training convolutional neural networks.
The robustness of our approach in response to data degradation is evaluated by comparing the performance of networks trained using the datasets.
arXiv Detail & Related papers (2020-10-21T00:51:14Z) - Dense Non-Rigid Structure from Motion: A Manifold Viewpoint [162.88686222340962]
Non-Rigid Structure-from-Motion (NRSfM) problem aims to recover 3D geometry of a deforming object from its 2D feature correspondences across multiple frames.
We show that our approach significantly improves accuracy, scalability, and robustness against noise.
arXiv Detail & Related papers (2020-06-15T09:15:54Z) - Implicit Functions in Feature Space for 3D Shape Reconstruction and
Completion [53.885984328273686]
Implicit Feature Networks (IF-Nets) deliver continuous outputs, can handle multiple topologies, and complete shapes for missing or sparse input data.
IF-Nets clearly outperform prior work in 3D object reconstruction in ShapeNet, and obtain significantly more accurate 3D human reconstructions.
arXiv Detail & Related papers (2020-03-03T11:14:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.