論文の概要: Bridging Dictionary: AI-Generated Dictionary of Partisan Language Use
- arxiv url: http://arxiv.org/abs/2407.09661v1
- Date: Fri, 12 Jul 2024 19:44:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 21:28:05.258963
- Title: Bridging Dictionary: AI-Generated Dictionary of Partisan Language Use
- Title(参考訳): Bridging Dictionary: パルチザン語使用のAI生成辞書
- Authors: Hang Jiang, Doug Beeferman, William Brannon, Andrew Heyward, Deb Roy,
- Abstract要約: Bridging Dictionaryは、異なる政治的見解を持つ人々によって、言葉がどのように認識されているかを示すインタラクティブなツールである。
Bridging Dictionaryには、静的で印刷可能なドキュメントが含まれており、大きな言語モデルによって生成された要約を含む796の用語がある。
ユーザーは選択した単語を探索し、その頻度、感情、要約、政治的分裂の例を視覚化することができる。
- 参考スコア(独自算出の注目度): 21.15400893251543
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Words often carry different meanings for people from diverse backgrounds. Today's era of social polarization demands that we choose words carefully to prevent miscommunication, especially in political communication and journalism. To address this issue, we introduce the Bridging Dictionary, an interactive tool designed to illuminate how words are perceived by people with different political views. The Bridging Dictionary includes a static, printable document featuring 796 terms with summaries generated by a large language model. These summaries highlight how the terms are used distinctively by Republicans and Democrats. Additionally, the Bridging Dictionary offers an interactive interface that lets users explore selected words, visualizing their frequency, sentiment, summaries, and examples across political divides. We present a use case for journalists and emphasize the importance of human agency and trust in further enhancing this tool. The deployed version of Bridging Dictionary is available at https://dictionary.ccc-mit.org/.
- Abstract(参考訳): 言葉は様々な背景を持つ人々にとって異なる意味を持つことが多い。
今日の社会的分極の時代は、特に政治的コミュニケーションやジャーナリズムにおいて、コミュニケーションの誤りを防ぐために、言葉を慎重に選ぶことを要求する。
この問題に対処するために、異なる政治的見解を持つ人々によって、言葉がどのように認識されているかを示すインタラクティブなツールであるBridging Dictionaryを紹介した。
Bridging Dictionaryには、静的で印刷可能なドキュメントが含まれており、大きな言語モデルによって生成された要約を含む796の用語がある。
これらの要約は、この用語が共和党員や民主党員によってどのように使われているかを強調している。
さらにブリジング辞典は、ユーザーが選択した単語を探索し、その頻度、感情、要約、そして政治的分裂の例を視覚化するインタラクティブなインターフェイスを提供する。
本稿では,ジャーナリストを事例として,人事機関の重要性と,このツールのさらなる強化への信頼を強調する。
Bridging Dictionaryのデプロイ版はhttps://dictionary.ccc-mit.org/で公開されている。
関連論文リスト
- Quantifying the redundancy between prosody and text [67.07817268372743]
我々は大きな言語モデルを用いて、韻律と単語自体の間にどれだけの情報が冗長であるかを推定する。
単語が持つ情報と韻律情報の間には,複数の韻律的特徴にまたがる高い冗長性が存在する。
それでも、韻律的特徴はテキストから完全には予測できないことが観察され、韻律は単語の上下に情報を運ぶことが示唆された。
論文 参考訳(メタデータ) (2023-11-28T21:15:24Z) - Moral consensus and divergence in partisan language use [0.0]
政治的議論では分極化が著しく増加し、党派分裂の拡大に寄与した。
我々はRedditコミュニティやニュースメディアで大規模で現実的な言語の使用を分析し、パルチザン言語を分割した心理的次元を明らかにする。
論文 参考訳(メタデータ) (2023-10-14T16:50:26Z) - Dialectograms: Machine Learning Differences between Discursive
Communities [0.0]
単語の埋め込みを利用して、単語の使い方を地図化することで、完全な埋め込み空間の豊かさを活用するための一歩を踏み出した。
そこで本研究では,単語の用法に違いがあり,頻繁な単語や多文語を抽出する既存手法の傾向を克服する新しい尺度を提案する。
論文 参考訳(メタデータ) (2023-02-11T11:32:08Z) - Beyond Contrastive Learning: A Variational Generative Model for
Multilingual Retrieval [109.62363167257664]
本稿では,多言語テキスト埋め込み学習のための生成モデルを提案する。
我々のモデルは、$N$言語で並列データを操作する。
本手法は, 意味的類似性, ビットクストマイニング, 言語間質問検索などを含む一連のタスクに対して評価を行う。
論文 参考訳(メタデータ) (2022-12-21T02:41:40Z) - Dictionary-Assisted Supervised Contrastive Learning [0.0]
本稿では,辞書支援型教師付きコントラスト学習(DASCL)の目的について紹介する。
共通の固定トークンは、関心の概念に関連する辞書(ies)に現れるコーパス内の任意の単語を置き換える。
DASCLとクロスエントロピーは、数ショットの学習設定と社会科学応用における分類性能指標を改善する。
論文 参考訳(メタデータ) (2022-10-27T04:57:43Z) - Fake it Till You Make it: Self-Supervised Semantic Shifts for
Monolingual Word Embedding Tasks [58.87961226278285]
語彙意味変化をモデル化するための自己教師付きアプローチを提案する。
本手法は,任意のアライメント法を用いて意味変化の検出に利用できることを示す。
3つの異なるデータセットに対する実験結果を用いて,本手法の有用性について述べる。
論文 参考訳(メタデータ) (2021-01-30T18:59:43Z) - NLP-CIC @ DIACR-Ita: POS and Neighbor Based Distributional Models for
Lexical Semantic Change in Diachronic Italian Corpora [62.997667081978825]
本稿では,イタリア語に対する教師なし語彙意味変化のシステムと知見について述べる。
その課題は、対象の単語が時間とともにその意味を進化させたかどうかを判断することであり、それは2つの時間固有のデータセットからの原文のみに依存する。
本研究では,各期間に対象単語を表す2つのモデルを提案し,しきい値と投票方式を用いて変化単語を予測する。
論文 参考訳(メタデータ) (2020-11-07T11:27:18Z) - Speakers Fill Lexical Semantic Gaps with Context [65.08205006886591]
我々は単語の語彙的あいまいさを意味のエントロピーとして運用する。
単語のあいまいさの推定値と,WordNetにおける単語の同義語数との間には,有意な相関関係が認められた。
これは、あいまいさの存在下では、話者が文脈をより情報的にすることで補うことを示唆している。
論文 参考訳(メタデータ) (2020-10-05T17:19:10Z) - Interactive Re-Fitting as a Technique for Improving Word Embeddings [0.0]
我々は,単語の集合を互いに近づけることで,単語の埋め込み空間の一部を調整できるようにする。
提案手法では,単語埋め込みにおける潜在的なバイアスをユーザが操作する際,選択的な後処理をトリガーし,評価することができる。
論文 参考訳(メタデータ) (2020-09-30T21:54:22Z) - Comparative Analysis of Word Embeddings for Capturing Word Similarities [0.0]
分散言語表現は、様々な自然言語処理タスクにおいて、言語表現において最も広く使われている技術となっている。
ディープラーニング技術に基づく自然言語処理モデルのほとんどは、単語埋め込みと呼ばれる、すでに訓練済みの分散単語表現を使用している。
適切な単語の埋め込みを選択することは 複雑な作業です なぜなら、投影された埋め込み空間は 人間にとって直感的ではないからです
論文 参考訳(メタデータ) (2020-05-08T01:16:03Z) - Techniques for Vocabulary Expansion in Hybrid Speech Recognition Systems [54.49880724137688]
語彙外単語(OOV)の問題は、音声認識システムにおいて典型的である。
OOVをカバーするための一般的なアプローチの1つは、単語ではなくサブワード単位を使用することである。
本稿では,グラフ構築法と探索法の両方のレベルで,この解の既存手法について検討する。
論文 参考訳(メタデータ) (2020-03-19T21:24:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。