論文の概要: EVOLVE: Predicting User Evolution and Network Dynamics in Social Media Using Fine-Tuned GPT-like Model
- arxiv url: http://arxiv.org/abs/2407.09691v1
- Date: Fri, 12 Jul 2024 21:20:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 21:18:20.408930
- Title: EVOLVE: Predicting User Evolution and Network Dynamics in Social Media Using Fine-Tuned GPT-like Model
- Title(参考訳): EVOLVE: 微調整GPT様モデルを用いたソーシャルメディアにおけるユーザ進化とネットワークダイナミクスの予測
- Authors: Ismail Hossain, Md Jahangir Alam, Sai Puppala, Sajedul Talukder,
- Abstract要約: 本研究では,ソーシャルメディア上での利用者の生活の進化を予測的に理解する手法を提案する。
GPTライクなデコーダのみのモデルを微調整し、オンラインソーシャルメディアにおけるユーザの進化の将来の段階を予測する。
- 参考スコア(独自算出の注目度): 5.5997926295092295
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Social media platforms are extensively used for sharing personal emotions, daily activities, and various life events, keeping people updated with the latest happenings. From the moment a user creates an account, they continually expand their network of friends or followers, freely interacting with others by posting, commenting, and sharing content. Over time, user behavior evolves based on demographic attributes and the networks they establish. In this research, we propose a predictive method to understand how a user evolves on social media throughout their life and to forecast the next stage of their evolution. We fine-tune a GPT-like decoder-only model (we named it E-GPT: Evolution-GPT) to predict the future stages of a user's evolution in online social media. We evaluate the performance of these models and demonstrate how user attributes influence changes within their network by predicting future connections and shifts in user activities on social media, which also addresses other social media challenges such as recommendation systems.
- Abstract(参考訳): ソーシャルメディアプラットフォームは、個人の感情、日々の活動、さまざまなライフイベントの共有に広く使われており、最新の出来事を人々に知らせている。
ユーザーがアカウントを作成する瞬間から、彼らは友達やフォロワーのネットワークを継続的に拡張し、投稿、コメント、共有によって他人と自由にやりとりする。
時間の経過とともに、ユーザー行動は人口統計特性と彼らが確立したネットワークに基づいて進化する。
本研究では,ユーザが生涯にわたってソーシャルメディア上でどのように進化していくかを理解するための予測手法を提案し,その進化の次の段階を予測する。
我々はGPTのようなデコーダのみのモデル(E-GPT: Evolution-GPT)を微調整し、オンラインソーシャルメディアにおけるユーザの進化の将来のステージを予測する。
我々は,これらのモデルの性能を評価し,ユーザの属性がネットワーク内の変化にどのように影響するかを,ソーシャルメディア上での今後のつながりやユーザ活動の変化を予測し,またリコメンデーションシステムなどの他のソーシャルメディアの課題にも対処する。
関連論文リスト
- Balancing User Preferences by Social Networks: A Condition-Guided Social Recommendation Model for Mitigating Popularity Bias [64.73474454254105]
ソーシャルレコメンデーションモデルは、ユーザに対してユニークなパーソナライズされたレコメンデーション結果を提供するために、ソーシャルインタラクションをデザインに織り込む。
既存のソーシャルレコメンデーションモデルは、人気バイアスや社会的情報の冗長性の問題に対処できない。
本稿では,モデルの人気バイアスを軽減するための条件付きソーシャルレコメンデーションモデル(CGSoRec)を提案する。
論文 参考訳(メタデータ) (2024-05-27T02:45:01Z) - Decoding the Silent Majority: Inducing Belief Augmented Social Graph
with Large Language Model for Response Forecasting [74.68371461260946]
SocialSenseは、既存のソーシャルネットワーク上に信念中心のグラフを誘導するフレームワークであり、グラフベースの伝播によって社会的ダイナミクスを捉える。
本手法は,ゼロショット設定と教師あり設定の両方に対する実験的な評価において,既存の最先端技術を超えている。
論文 参考訳(メタデータ) (2023-10-20T06:17:02Z) - Social Media Harms as a Trilemma: Asymmetry, Algorithms, and Audacious
Design Choices [0.0]
ソーシャルメディアは、2000年代初頭に初期のソーシャルネットワークが誕生して以来、その利用とリーチを拡大してきた。
我々は、情報(エコ)システムとして、ソーシャルメディアサイトは3つの側面から脆弱であると主張している。
上述の3Aを解き放つための様々な同盟分野からの提言をまとめておきます。
論文 参考訳(メタデータ) (2023-04-28T08:12:38Z) - Cross-Network Social User Embedding with Hybrid Differential Privacy
Guarantees [81.6471440778355]
プライバシー保護方式でユーザを包括的に表現するために,ネットワーク横断型ソーシャルユーザ埋め込みフレームワークDP-CroSUEを提案する。
特に、各異種ソーシャルネットワークに対して、異種データ型に対するプライバシー期待の変化を捉えるために、まずハイブリッドな差分プライバシーの概念を導入する。
ユーザ埋め込みをさらに強化するため、新しいネットワーク間GCN埋め込みモデルは、それらの整列したユーザを介して、ネットワーク間で知識を伝達するように設計されている。
論文 参考訳(メタデータ) (2022-09-04T06:22:37Z) - Harnessing the Power of Ego Network Layers for Link Prediction in Online
Social Networks [0.734084539365505]
予測は典型的には教師なしまたは教師なしの学習に基づいている。
個人の社会的構造に関するより豊かな情報は、より良い予測につながるかもしれないと我々は主張する。
社会的認識が予測性能に大きな改善をもたらすことを示す。
論文 参考訳(メタデータ) (2021-09-19T18:49:10Z) - Detecting Ideal Instagram Influencer Using Social Network Analysis [0.0]
本論文は、現実のオンラインマーケティング戦略のためのソーシャルネットワーク分析(SNA)に焦点を当てている。
この研究は、ネットワーク内の最も中心的なノードを特定するための様々な集中度尺度を比較し、個々のユーザの拡散行動を理解するために線形しきい値モデルを用いて貢献する。
論文 参考訳(メタデータ) (2021-07-12T20:53:58Z) - Can You be More Social? Injecting Politeness and Positivity into
Task-Oriented Conversational Agents [60.27066549589362]
人間エージェントが使用する社会言語は、ユーザーの応答性の向上とタスク完了に関連しています。
このモデルは、ソーシャル言語理解要素で拡張されたシーケンスからシーケンスまでのディープラーニングアーキテクチャを使用する。
人的判断と自動言語尺度の両方を用いたコンテンツ保存と社会言語レベルの評価は,エージェントがより社会的に適切な方法でユーザの問題に対処できる応答を生成できることを示している。
論文 参考訳(メタデータ) (2020-12-29T08:22:48Z) - SoMin.ai: Personality-Driven Content Generation Platform [60.49416044866648]
世界初のパーソナリティ駆動型マーケティングコンテンツ生成プラットフォームであるSoMin.aiを紹介します。
このプラットフォームは、ディープ・マルチビュー・パーソナリティ・プロファイリング・フレームワークと、スタイル・ジェネレーティブ・敵ネットワークを組み合わせている。
ソーシャルネットワーキングのユーザエクスペリエンスの向上や、コンテンツマーケティングのルーチンに使用できる。
論文 参考訳(メタデータ) (2020-11-30T08:33:39Z) - TIES: Temporal Interaction Embeddings For Enhancing Social Media
Integrity At Facebook [9.023847175654602]
本稿では、ログな社会的相互作用を捉え、さらに適切な行動にフラグを立てるための新しい時間的相互作用埋め込みSモデルを提案する。
TIESは、Facebookスケールネットワークにおける教師付き、ディープラーニング、プロダクション準備ができているモデルである。
TIESの現実的な影響を示すために,誤報の拡散防止,偽アカウントの検出,広告支払いリスクの低減など,いくつかの応用を提示する。
論文 参考訳(メタデータ) (2020-02-18T22:56:40Z) - I Know Where You Are Coming From: On the Impact of Social Media Sources
on AI Model Performance [79.05613148641018]
我々は、異なるソーシャルネットワークのマルチモーダルデータから学習する際、異なる機械学習モデルの性能について検討する。
最初の実験結果から,ソーシャルネットワークの選択がパフォーマンスに影響を及ぼすことが明らかとなった。
論文 参考訳(メタデータ) (2020-02-05T11:10:44Z) - Inf-VAE: A Variational Autoencoder Framework to Integrate Homophily and
Influence in Diffusion Prediction [31.420391287068846]
本稿では,近距離保存型ソーシャルおよび位置符号化型潜伏変数を通じて,ホモフィリと影響を共同で埋め込む新しい変分オートエンコーダフレームワーク(Inf-VAE)を提案する。
Inf-VAEにおけるDigg, Weibo, Stack-Exchangesなど,複数の実世界のソーシャルネットワークデータセットに対する実験結果から,最先端拡散予測モデルよりも大きな利益(22% MAP@10)が得られた。
論文 参考訳(メタデータ) (2020-01-01T03:35:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。