Chaos, entanglement and Husimi Q function in quantum Rabi model
- URL: http://arxiv.org/abs/2407.09802v1
- Date: Sat, 13 Jul 2024 08:21:11 GMT
- Title: Chaos, entanglement and Husimi Q function in quantum Rabi model
- Authors: Shangyun Wang, Songbai Chen, Jiliang Jing,
- Abstract summary: We study whether entanglement entropy and Husimi Q function, as diagnostic tools for quantum chaos, are invalidated by quantum collapse and revival.
Our results imply that entanglement entropy and Husimi Q function maintain the function for diagnosing chaos in the QRM.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As one of the famous effects in quantum Rabi model (QRM), Rabi oscillation may lead to the occurrence of quantum dynamics behaviors without classical dynamic counterparts, such as quantum collapse and revival effects. In this paper, we focus on studying whether the entanglement entropy and Husimi Q function, as diagnostic tools for quantum chaos in quantum systems, are invalidated by quantum collapse and revival. It is shown that the saturation values of entanglement entropy for initial states located in the chaotic sea of QRM are higher than that in the regular regions. When the system reaches dynamic equilibrium, the Husimi Q function which initial states located in the chaotic sea are more dispersed than that in the regular regions. Moreover, we observe a good correspondence between the the time-average entanglement entropy and classical phase space structures. Our results imply that entanglement entropy and Husimi Q function maintain the function for diagnosing chaos in the QRM and the corresponding principle does not be invalidated by quantum collapse and revival effects in this system.
Related papers
- Magnetic Dipolar Quantum Battery with Spin-Orbit Coupling [0.5055815271772576]
We investigate a magnetic dipolar system influenced by Zeeman splitting, DM interaction, and KSEA exchange interaction.
We analyze the effects of dephasing noise and thermal equilibrium on quantum resources, such as coherence, quantum discord, and concurrence.
arXiv Detail & Related papers (2024-09-08T07:12:18Z) - Quantum coarsening and collective dynamics on a programmable quantum simulator [27.84599956781646]
We experimentally study collective dynamics across a (2+1)D Ising quantum phase transition.
By deterministically preparing and following the evolution of ordered domains, we show that the coarsening is driven by the curvature of domain boundaries.
We quantitatively explore these phenomena and further observe long-lived oscillations of the order parameter, corresponding to an amplitude (Higgs) mode.
arXiv Detail & Related papers (2024-07-03T16:29:12Z) - Dynamics of Steered Quantum Coherence and Magic Resource under Sudden Quench [0.0]
We find that the system's response is highly sensitive to the initial state and magnetic field strength.
Results highlight the interplay between the quantum information resources and dynamics of quantum systems away from the equilibrium.
arXiv Detail & Related papers (2024-05-11T09:05:00Z) - Quantum collapse and exponential growth of out-of-time-ordered
correlator in anisotropic quantum Rabi model [10.967081346848687]
We show that the exponential growth of the out-of-time-ordered correlator (OTOC) at early times for the initial states centered both in the chaotic and stable regions of the anisotropic quantum Rabi model.
We attribute the exponential growth of the OTOC to quantum collapse which provides a novel mechanism of yielding exponential growth of the OTOC in quantum systems.
Our results show that compared with the OTOC, the linear entanglement entropy and Loschmidt echo seem to be more effective to diagnose the signals of quantum chaos in the anisotropic quantum Rabi model.
arXiv Detail & Related papers (2023-05-27T15:23:37Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Bridging quantum criticality via many-body scarring [0.11083289076967892]
Some initial states give rise to persistent quantum revivals -- a type of weak ergodicity breaking known as quantum many-body scarring' (QMBS)
We show that QMBS gets destroyed by tuning the system to a quantum critical point, echoing the disappearance of long-range order in the system's ground state at equilibrium.
We demonstrate the existence of a continuous family of initial states that give rise to QMBS and formulate a ramping protocol that can be used to prepare such states in experiment.
arXiv Detail & Related papers (2023-01-09T19:02:41Z) - Indication of critical scaling in time during the relaxation of an open
quantum system [34.82692226532414]
Phase transitions correspond to the singular behavior of physical systems in response to continuous control parameters like temperature or external fields.
Near continuous phase transitions, associated with the divergence of a correlation length, universal power-law scaling behavior with critical exponents independent of microscopic system details is found.
arXiv Detail & Related papers (2022-08-10T05:59:14Z) - Quantum Instability [30.674987397533997]
We show how a time-independent, finite-dimensional quantum system can give rise to a linear instability corresponding to that in the classical system.
An unstable quantum system has a richer spectrum and a much longer recurrence time than a stable quantum system.
arXiv Detail & Related papers (2022-08-05T19:53:46Z) - Sensing quantum chaos through the non-unitary geometric phase [62.997667081978825]
We propose a decoherent mechanism for sensing quantum chaos.
The chaotic nature of a many-body quantum system is sensed by studying the implications that the system produces in the long-time dynamics of a probe coupled to it.
arXiv Detail & Related papers (2021-04-13T17:24:08Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.