Dynamics of Steered Quantum Coherence and Magic Resource under Sudden Quench
- URL: http://arxiv.org/abs/2405.06960v1
- Date: Sat, 11 May 2024 09:05:00 GMT
- Title: Dynamics of Steered Quantum Coherence and Magic Resource under Sudden Quench
- Authors: Saeid Ansari, Alireza Akbari, R. Jafari,
- Abstract summary: We find that the system's response is highly sensitive to the initial state and magnetic field strength.
Results highlight the interplay between the quantum information resources and dynamics of quantum systems away from the equilibrium.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We explore the dynamics of l_1-norm of steered quantum coherence (SQC), steered quantum relative entropy (SQRE), and magic resource quantifier (QRM) in the one-dimensional XY spin chain in the presence of time dependent transverse magnetic field. We find that the system's response is highly sensitive to the initial state and magnetic field strength. % We show that the dynamics of SQC, SQRE and MRQ revealing the critical point associated with equilibrium quantum phase transition (QPT) of the system. All quantities show maximum at QPT when the initial state is prepared in the ferromagnetic phase. Conversely, they undergo abrupt changes at quantum critical point if the initial state of the system is paramagnetic. Moreover, our results confirm that, when quench is done to the quantum critical point, the first suppression (revival) time scales linearly with the system size, and remarkably, its scaling ratio remains consistent for all quenches, irrespective of the initial phase of the system. % These results highlight the interplay between the quantum information resources and dynamics of quantum systems away from the equilibrium. Such insights could be vital for quantum information processing and understanding non-equilibrium phenomena in quantum many-body systems.
Related papers
- Quantum information scrambling in adiabatically-driven critical systems [49.1574468325115]
Quantum information scrambling refers to the spread of the initially stored information over many degrees of freedom of a quantum many-body system.
We extend the notion of quantum information scrambling to critical quantum many-body systems undergoing an adiabatic evolution.
arXiv Detail & Related papers (2024-08-05T18:00:05Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Effect of the readout efficiency of quantum measurement on the system entanglement [44.99833362998488]
We quantify the entanglement for a particle on a 1d quantum random walk under inefficient monitoring.
We find that the system's maximal mean entanglement at the measurement-induced quantum-to-classical crossover is in different ways by the measurement strength and inefficiency.
arXiv Detail & Related papers (2024-02-29T18:10:05Z) - Quantum Fisher Information for Different States and Processes in Quantum
Chaotic Systems [77.34726150561087]
We compute the quantum Fisher information (QFI) for both an energy eigenstate and a thermal density matrix.
We compare our results with earlier results for a local unitary transformation.
arXiv Detail & Related papers (2023-04-04T09:28:19Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Quantum and classical correlations in open quantum-spin lattices via
truncated-cumulant trajectories [0.0]
We show a new method to treat open quantum-spin lattices, based on the solution of the open-system dynamics.
We validate this approach in the paradigmatic case of the phase transitions of the dissipative 2D XYZ lattice, subject to spontaneous decay.
arXiv Detail & Related papers (2022-09-27T13:23:38Z) - Directional scrambling of quantum information in helical multiferroics [0.0]
Local excitations as carriers of quantum information spread out in the system in ways governed by the underlying interaction and symmetry.
Character and direction dependence of quantum scrambling can be inferred from the out-of-time-ordered commutators.
We study and quantify the directionality of quantum information propagation in oxide-based helical spin systems.
arXiv Detail & Related papers (2021-12-20T17:58:19Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Dynamics of coherence: Maximal quantum Fisher information vs. Loschmidt
echo [0.0]
We consider the dynamics of maximal quantum Fisher information (MQFI) after sudden quenches for the one-dimensional transverse-field Ising model.
We name this phenomenon textitthe dynamical MQFI transitions, occurring at the critical times $t_c$.
arXiv Detail & Related papers (2020-06-25T14:21:13Z) - Dynamics of Quantum Coherence and Quantum Fisher Information After
Sudden Quench [0.0]
We study the dynamics of relative entropy and $l_1$-norm of coherence in a time-dependent coupled XY spin chain.
We also observe that when the system is quenched to the critical point, these quantities show suppressions and revivals.
arXiv Detail & Related papers (2020-02-01T15:27:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.