論文の概要: Synergistic Multi-Agent Framework with Trajectory Learning for Knowledge-Intensive Tasks
- arxiv url: http://arxiv.org/abs/2407.09893v1
- Date: Sat, 13 Jul 2024 13:58:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 20:18:01.964914
- Title: Synergistic Multi-Agent Framework with Trajectory Learning for Knowledge-Intensive Tasks
- Title(参考訳): 知識集約型タスクのための軌道学習を用いた相乗的多エージェントフレームワーク
- Authors: Shengbin Yue, Siyuan Wang, Wei Chen, Xuanjing Huang, Zhongyu Wei,
- Abstract要約: 大規模言語モデル(LLM)は、様々な自然言語処理タスクにおいて大きなブレークスルーをもたらした。
知識集約的なシナリオにおいて、現実的に一貫した応答を生成することは、依然として課題である。
本稿では,LSM生成応答の解釈可能性と現実的一貫性を高めるために,外部知識を活用する新しいマルチエージェントフレームワークSMARTを紹介する。
- 参考スコア(独自算出の注目度): 44.42989163847349
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in Large Language Models (LLMs) have led to significant breakthroughs in various natural language processing tasks. However, generating factually consistent responses in knowledge-intensive scenarios remains a challenge due to issues such as hallucination, difficulty in acquiring long-tailed knowledge, and limited memory expansion. This paper introduces SMART, a novel multi-agent framework that leverages external knowledge to enhance the interpretability and factual consistency of LLM-generated responses. SMART comprises four specialized agents, each performing a specific sub-trajectory action to navigate complex knowledge-intensive tasks. We propose a multi-agent co-training paradigm, Long- and Short-Trajectory Learning, which ensures synergistic collaboration among agents while maintaining fine-grained execution by each agent. Extensive experiments on 5 tasks demonstrate SMART's superior performance compared to previous widely adopted methods.
- Abstract(参考訳): 大規模言語モデル(LLM)の最近の進歩は、様々な自然言語処理タスクにおいて大きなブレークスルーをもたらしている。
しかし, 覚醒, 長期的知識獲得の難しさ, メモリ拡張の制限などの問題により, 知識集約シナリオにおいて, 現実的に一貫した応答を生成することは依然として課題である。
本稿では,LSM生成応答の解釈可能性と現実的一貫性を高めるために,外部知識を活用する新しいマルチエージェントフレームワークSMARTを紹介する。
SMARTは4つの特殊エージェントから構成され、それぞれが複雑な知識集約タスクをナビゲートするための特定のサブ軌道アクションを実行する。
エージェント間の相乗的協調を保証するとともに,各エージェントによるきめ細かい実行を維持できるマルチエージェント協調学習パラダイムであるLong- and Short-Trajectory Learningを提案する。
5つのタスクに関する大規模な実験は、SMARTが従来の広く採用されていた手法に比べて優れた性能を示した。
関連論文リスト
- RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
近年,MLLM (Multimodal Large Language Models) が注目されている。
検索拡張技術はLLMとMLLMの両方に有効なプラグインであることが証明されている。
本研究では,MLLMの新しい検索支援フレームワークであるRA-BLIP(Retrieval-Augmented Bootstrapping Language-Image Pre-training)を提案する。
論文 参考訳(メタデータ) (2024-10-18T03:45:19Z) - Knowledge Tagging System on Math Questions via LLMs with Flexible Demonstration Retriever [48.5585921817745]
大きな言語モデル(LLM)は知識タグ付けタスクを自動化するために使われる。
算数問題における知識タグ付けタスクに対するゼロショットと少数ショットの結果の強い性能を示す。
強化学習に基づくデモレトリバーの提案により,異なるサイズのLLMの潜在能力を活用できた。
論文 参考訳(メタデータ) (2024-06-19T23:30:01Z) - Smurfs: Leveraging Multiple Proficiency Agents with Context-Efficiency for Tool Planning [14.635361844362794]
Smurfs'は、大規模言語モデルの応用に革命をもたらすために設計された最先端のマルチエージェントフレームワークである。
Smurfは、余分なコストなしで複雑なタスクを解くモデルの能力を高めることができる。
論文 参考訳(メタデータ) (2024-05-09T17:49:04Z) - WESE: Weak Exploration to Strong Exploitation for LLM Agents [95.6720931773781]
本稿では,オープンワールド対話型タスクの解法において,LLMエージェントの強化を目的としたWeak Exploration to Strong Exploitation (WESE)を提案する。
WESEは、探究と搾取のプロセスを分離し、費用対効果の弱いエージェントを用いて世界的知識の探索を行う。
次に、獲得した知識を格納し、タスク関連知識を抽出する知識グラフベースの戦略を導入する。
論文 参考訳(メタデータ) (2024-04-11T03:31:54Z) - KnowAgent: Knowledge-Augmented Planning for LLM-Based Agents [54.09074527006576]
大規模言語モデル(LLM)は複雑な推論タスクにおいて大きな可能性を証明していますが、より高度な課題に取り組むには不十分です。
この不適切さは、主に言語エージェントのアクション知識が組み込まれていないことに起因する。
我々は、明示的な行動知識を取り入れることで、LLMの計画能力を高めるために設計された新しいアプローチであるKnowAgentを紹介する。
論文 参考訳(メタデータ) (2024-03-05T16:39:12Z) - Enabling Multi-Agent Transfer Reinforcement Learning via Scenario
Independent Representation [0.7366405857677227]
マルチエージェント強化学習(MARL)アルゴリズムは、エージェント間の協調や競合を必要とする複雑なタスクに広く採用されている。
本稿では,様々な状態空間を固定サイズの入力に統一することで,MARLの伝達学習を可能にする新しいフレームワークを提案する。
スクラッチから学習するエージェントと比較して,他のシナリオから学んだ操作スキルを用いたマルチエージェント学習性能の大幅な向上を示す。
論文 参考訳(メタデータ) (2024-02-13T02:48:18Z) - ExpeL: LLM Agents Are Experiential Learners [60.54312035818746]
実験学習エージェント(ExpeL)を導入し、パラメトリック更新を必要とせずにエージェント体験から学習できるようにする。
我々のエージェントは、経験を自律的に収集し、学習課題の集合から自然言語を用いて知識を抽出する。
推論において、エージェントは抽出された洞察と過去の経験をリコールし、情報的決定を行う。
論文 参考訳(メタデータ) (2023-08-20T03:03:34Z) - Multi-Agent Reinforcement Learning Guided by Signal Temporal Logic
Specifications [22.407388715224283]
STL誘導型マルチエージェント強化学習フレームワークを提案する。
STL要求は、各エージェントの目的と安全仕様に応じてタスク仕様の両方を含むように設計され、STL仕様の値は、報酬を生成するために活用される。
論文 参考訳(メタデータ) (2023-06-11T23:53:29Z) - KnowRU: Knowledge Reusing via Knowledge Distillation in Multi-agent
Reinforcement Learning [16.167201058368303]
深層強化学習(RL)アルゴリズムはマルチエージェント領域において劇的に進歩している。
この問題を解決するには、歴史的経験の効率的な活用が不可欠です。
知識再利用のための「KnowRU」という手法を提案する。
論文 参考訳(メタデータ) (2021-03-27T12:38:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。