論文の概要: AtomAgents: Alloy design and discovery through physics-aware multi-modal multi-agent artificial intelligence
- arxiv url: http://arxiv.org/abs/2407.10022v1
- Date: Sat, 13 Jul 2024 22:46:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 19:48:19.202535
- Title: AtomAgents: Alloy design and discovery through physics-aware multi-modal multi-agent artificial intelligence
- Title(参考訳): AtomAgents: 物理を意識したマルチモーダルマルチエージェント人工知能による合金設計と発見
- Authors: Alireza Ghafarollahi, Markus J. Buehler,
- Abstract要約: 提案されている物理対応生成AIプラットフォームAtomAgentsは、大規模言語モデル(LLM)のインテリジェンスをシナジする
以上の結果から, 合金間におけるキー特性の正確な予測が可能となり, 先進金属合金の開発を推し進めるためには, 固溶合金が重要な役割を担っていることが明らかとなった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The design of alloys is a multi-scale problem that requires a holistic approach that involves retrieving relevant knowledge, applying advanced computational methods, conducting experimental validations, and analyzing the results, a process that is typically reserved for human experts. Machine learning (ML) can help accelerate this process, for instance, through the use of deep surrogate models that connect structural features to material properties, or vice versa. However, existing data-driven models often target specific material objectives, offering limited flexibility to integrate out-of-domain knowledge and cannot adapt to new, unforeseen challenges. Here, we overcome these limitations by leveraging the distinct capabilities of multiple AI agents that collaborate autonomously within a dynamic environment to solve complex materials design tasks. The proposed physics-aware generative AI platform, AtomAgents, synergizes the intelligence of large language models (LLM) the dynamic collaboration among AI agents with expertise in various domains, including knowledge retrieval, multi-modal data integration, physics-based simulations, and comprehensive results analysis across modalities that includes numerical data and images of physical simulation results. The concerted effort of the multi-agent system allows for addressing complex materials design problems, as demonstrated by examples that include autonomously designing metallic alloys with enhanced properties compared to their pure counterparts. Our results enable accurate prediction of key characteristics across alloys and highlight the crucial role of solid solution alloying to steer the development of advanced metallic alloys. Our framework enhances the efficiency of complex multi-objective design tasks and opens new avenues in fields such as biomedical materials engineering, renewable energy, and environmental sustainability.
- Abstract(参考訳): 合金の設計は、関連する知識を検索し、高度な計算手法を適用し、実験的な検証を行い、その結果を解析することを含む、総合的なアプローチを必要とするマルチスケールの問題である。
機械学習(ML)は、例えば、構造的特徴と物質的特性を結び付けるディープサロゲートモデルを使用することで、このプロセスの加速に役立つ。
しかし、既存のデータ駆動モデルは、しばしば特定の材料目標をターゲットにしており、ドメイン外の知識を統合するための柔軟性が制限されており、新しい予期せぬ課題に適応できない。
ここでは、複雑な材料設計タスクを解決するために、動的環境内で自律的に協調する複数のAIエージェントの異なる能力を活用することで、これらの制限を克服する。
提案されている物理認識型生成AIプラットフォームであるAtomAgentsは、知識検索、マルチモーダルデータ統合、物理ベースのシミュレーション、数値データや物理シミュレーション結果の画像を含むモダリティ全体にわたる包括的な結果解析を含む、さまざまな分野の専門知識を持つAIエージェント間の動的コラボレーションを、大規模言語モデル(LLM)のインテリジェンスをシナジする。
マルチエージェントシステムの協調的な取り組みにより、複雑な材料設計の問題に対処することが可能となり、純粋な材料よりも優れた特性を持つ金属合金を自律的に設計する例が示されている。
以上の結果から, 合金間におけるキー特性の正確な予測が可能となり, 先進金属合金の開発を推し進めるためには, 固溶合金が重要な役割を担っていることが明らかとなった。
本フレームワークは, 複雑な多目的設計作業の効率化と, バイオメディカル材料工学, 再生可能エネルギー, 環境サステナビリティといった分野への新たな道を開く。
関連論文リスト
- Rapid and Automated Alloy Design with Graph Neural Network-Powered LLM-Driven Multi-Agent Systems [0.0]
マルチエージェントAIモデルは、新しい金属合金の発見を自動化するために使用される。
MLをベースとした原子間ポテンシャルをモデルとした立方晶(bcc)合金のNbMoTa族に着目した。
LLMをベースとしたエージェントの動的協調により、GNNの予測力を相乗化することにより、システムは巨大な合金設計空間を自律的にナビゲートする。
論文 参考訳(メタデータ) (2024-10-17T17:06:26Z) - Collaborative AI in Sentiment Analysis: System Architecture, Data Prediction and Deployment Strategies [3.3374611485861116]
大規模言語モデル(LLM)に基づく人工知能技術は、特に感情分析においてゲームチェンジャーとなっている。
しかし、複雑なマルチモーダルデータを処理するための多様なAIモデルの統合と、それに伴う機能抽出の高コストは、大きな課題を呈している。
本研究では,様々なAIシステムにまたがるタスクを効率的に分散・解決するための協調型AIフレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-17T06:14:34Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
本稿では,AIを活用したデータ分析ツールの可能性について考察する。
我々は、大規模言語とマルチモーダルモデルの出現が、データ分析ワークフローの様々な段階を強化する新しい機会を提供する方法について検討する。
次に、直感的なインタラクションを促進し、ユーザ信頼を構築し、AI支援分析ワークフローを複数のアプリにわたって合理化するための、人間中心の設計原則を調べます。
論文 参考訳(メタデータ) (2024-09-27T06:31:03Z) - HEMM: Holistic Evaluation of Multimodal Foundation Models [91.60364024897653]
マルチモーダル・ファンデーション・モデルは、画像、ビデオ、オーディオ、その他の知覚モダリティと共にテキストをホリスティックに処理することができる。
モデリング決定、タスク、ドメインの範囲を考えると、マルチモーダル基盤モデルの進歩を特徴づけ、研究することは困難である。
論文 参考訳(メタデータ) (2024-07-03T18:00:48Z) - Generative AI Agent for Next-Generation MIMO Design: Fundamentals, Challenges, and Vision [76.4345564864002]
次世代の多重入力多重出力(MIMO)はインテリジェントでスケーラブルであることが期待される。
本稿では、カスタマイズされた特殊コンテンツを生成することができる生成型AIエージェントの概念を提案する。
本稿では、生成AIエージェントをパフォーマンス分析に活用することの有効性を示す2つの説得力のあるケーススタディを示す。
論文 参考訳(メタデータ) (2024-04-13T02:39:36Z) - An Interactive Agent Foundation Model [49.77861810045509]
本稿では,AIエージェントを訓練するための新しいマルチタスクエージェントトレーニングパラダイムを用いた対話型エージェント基礎モデルを提案する。
トレーニングパラダイムは、視覚マスク付きオートエンコーダ、言語モデリング、次世代の予測など、多様な事前学習戦略を統一する。
私たちは、ロボティクス、ゲームAI、ヘルスケアという3つの異なる領域でフレームワークのパフォーマンスを実演します。
論文 参考訳(メタデータ) (2024-02-08T18:58:02Z) - ProtAgents: Protein discovery via large language model multi-agent
collaborations combining physics and machine learning [0.0]
ProtAgentsは、Large Language Models (LLMs)に基づいたde novoタンパク質設計のためのプラットフォームである。
異なる機能を持つ複数のAIエージェントは、動的環境内の複雑なタスクを協調的に処理する。
エージェントを設計する柔軟性と、動的LLMベースのマルチエージェント環境による自律的なコラボレーション能力は、大きな可能性を秘めている。
論文 参考訳(メタデータ) (2024-01-27T20:19:49Z) - MechAgents: Large language model multi-agent collaborations can solve
mechanics problems, generate new data, and integrate knowledge [0.6708125191843434]
ここでは、自律的なコラボレーションを通じて、弾力性に関する問題を実証する。
2エージェントチームは、古典的な弾性問題を解くために有限要素法を適用するために、効果的にコードを書き、実行し、自己修正することができる。
より複雑なタスクのために、我々は計画、定式化、コーディング、実行、プロセスと結果を批判する作業の分割を強化したより大きなエージェントグループを構築します。
論文 参考訳(メタデータ) (2023-11-14T13:49:03Z) - Artificial intelligence approaches for materials-by-design of energetic
materials: state-of-the-art, challenges, and future directions [0.0]
我々は,AIによる材料設計の進歩とそのエネルギー材料への応用についてレビューする。
文献における手法を,少数のデータから学習する能力の観点から評価する。
本稿では,メタラーニング,アクティブラーニング,ベイズラーニング,半/弱教師付きラーニングなど,EM教材の今後の研究方向性について提案する。
論文 参考訳(メタデータ) (2022-11-15T14:41:11Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
我々は,マルチモーダルモデルの解釈における最先端化に注力する。
提案手法であるDIMEは,マルチモーダルモデルの高精度かつきめ細かな解析を可能にする。
論文 参考訳(メタデータ) (2022-03-03T20:52:47Z) - Interpretable Hyperspectral AI: When Non-Convex Modeling meets
Hyperspectral Remote Sensing [57.52865154829273]
ハイパースペクトルイメージング、別名画像分光法は、地球科学リモートセンシング(RS)におけるランドマーク技術です。
過去10年間で、主に熟練した専門家によってこれらのハイパースペクトル(HS)製品を分析するための取り組みが行われています。
このため、さまざまなHS RSアプリケーションのためのよりインテリジェントで自動的なアプローチを開発することが急務です。
論文 参考訳(メタデータ) (2021-03-02T03:32:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。