論文の概要: LeanQuant: Accurate Large Language Model Quantization with Loss-Error-Aware Grid
- arxiv url: http://arxiv.org/abs/2407.10032v1
- Date: Sun, 14 Jul 2024 00:23:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 19:48:19.194043
- Title: LeanQuant: Accurate Large Language Model Quantization with Loss-Error-Aware Grid
- Title(参考訳): LeanQuant:Los-Error-Aware Gridによる大規模言語モデルの正確な量子化
- Authors: Tianyi Zhang, Anshumali Shrivastava,
- Abstract要約: 大規模言語モデル (LLM) は様々な分野にまたがって多くの応用がある。
重み量子化は、LLMの復号遅延とメモリ要求を低減する効果的な手法である。
本稿では,逆対角Hessianを利用して損失エラー対応量子化グリッドを学習するLeanQuantを提案する。
- 参考スコア(独自算出の注目度): 36.33062038680275
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have numerous applications across various domains, but their high computational and memory demands pose significant deployment challenges. Weight quantization is an effective technique for reducing the decoding latency and memory requirements of LLMs. Existing approaches primarily aim to maintain the quality of quantized models by preserving outliers in input features, but they still suffer significant quality loss at lower bit widths. Our approach builds on Optimal Brain Quantization (OBQ), an iterative weight-update-based quantization framework. We identify a key limitation of OBQ, specifically that its uniform quantization grid is suboptimal for maintaining model quality, as it introduces large errors to the task loss. To address this, we propose LeanQuant, which learns a loss-error-aware quantization grid by leveraging the inverse diagonal Hessian. Extensive empirical evaluations demonstrate that LeanQuant is both efficient and accurate; it can quantize a 70-billion-parameter model in 6 hours using a single 32GB GPU and performs favorably compared to competitive baselines in the 4-bit, 3-bit, and 2-bit regions.
- Abstract(参考訳): 大規模言語モデル(LLM)は、様々な領域にまたがる多数のアプリケーションを持つが、その高い計算量とメモリ要求は、大きなデプロイメント課題をもたらす。
重み量子化は、LLMの復号遅延とメモリ要求を低減する効果的な手法である。
既存のアプローチは主に、入力特徴の外れ値を保存することによって量子化モデルの質を維持することを目的としているが、ビット幅の低いところでは大きな品質損失を被っている。
我々のアプローチは、反復的な重み更新に基づく量子化フレームワークであるOBQ(Optimal Brain Quantization)に基づいている。
OBQの重要な制限、特に、その均一な量子化グリッドは、タスク損失に大きなエラーをもたらすため、モデル品質を維持するのに最適である。
そこで我々は,逆対角Hessianを利用して損失エラー対応量子化グリッドを学習するLeanQuantを提案する。
1つの32GB GPUを使用して、70ビリオンパラメータモデルを6時間で定量化でき、4ビット、3ビット、2ビット領域の競合ベースラインと比較して好適に動作する。
関連論文リスト
- Pushing the Limits of Large Language Model Quantization via the Linearity Theorem [71.3332971315821]
本稿では,階層的$ell$再構成誤差と量子化によるモデルパープレキシティ増加との直接的な関係を確立する「線形定理」を提案する。
この知見は,(1)アダマール回転とHIGGSと呼ばれるMSE最適格子を用いた単純なデータフリーLCM量子化法,(2)非一様層ごとの量子化レベルを求める問題に対する最適解の2つの新しい応用を可能にする。
論文 参考訳(メタデータ) (2024-11-26T15:35:44Z) - GWQ: Gradient-Aware Weight Quantization for Large Language Models [61.17678373122165]
勾配対応重み量子化(GWQ)は、勾配を利用して外れ値の局所化を行う、低ビット重み量子化のための最初の量子化手法である。
GWQはFP16精度で上位1%の外れ値に対応し、残りの非外れ値重みは低ビットフォーマットで格納される。
ゼロショットタスクでは、GWQ量子化モデルは他の量子化法よりも精度が高い。
論文 参考訳(メタデータ) (2024-10-30T11:16:04Z) - Quantized Prompt for Efficient Generalization of Vision-Language Models [27.98205540768322]
CLIPのような大規模事前学習型視覚言語モデルは、様々な分野で大きな成功を収めている。
下流への適応の間、最も難しい問題は過度に適合し、破滅的な忘れ物である。
本稿では,視覚言語モデルを正規化するための量子化について検討する。
論文 参考訳(メタデータ) (2024-07-15T13:19:56Z) - LLMC: Benchmarking Large Language Model Quantization with a Versatile Compression Toolkit [55.73370804397226]
鍵圧縮技術である量子化は、大きな言語モデルを圧縮し、加速することにより、これらの要求を効果的に軽減することができる。
本稿では,プラグアンドプレイ圧縮ツールキットであるLLMCについて,量子化の影響を公平かつ体系的に検討する。
この汎用ツールキットによって、我々のベンチマークはキャリブレーションデータ、アルゴリズム(3つの戦略)、データフォーマットの3つの重要な側面をカバーしています。
論文 参考訳(メタデータ) (2024-05-09T11:49:05Z) - QuantEase: Optimization-based Quantization for Language Models [17.333778751252392]
本研究は,近年のLarge Language Models (LLMs) の進歩から,様々な量子化層の量子化(PTQ)を導入する。
当社のCDベースのアプローチは、ベクター操作にのみ依存して、簡単にアップデートできる。
我々はまた、完全な精度で重要な重量(外積)を維持することができるような、外れ値のアプローチも検討している。
論文 参考訳(メタデータ) (2023-09-05T01:39:09Z) - FineQuant: Unlocking Efficiency with Fine-Grained Weight-Only
Quantization for LLMs [9.072821427818557]
大規模言語モデル(LLM)は、様々な言語タスクで最先端のパフォーマンスを達成しているが、実用的なデプロイメントには課題がある。
メモリ消費を削減し,LLMの推論を高速化する,効率的な重みのみの量子化法を提案する。
我々は,OPT-175Bや内部MoEモデルのような大規模オープンソースモデルに対するアプローチを評価し,スループットを最大3.65倍に向上しながら,最小限の精度の損失を示す。
論文 参考訳(メタデータ) (2023-08-16T23:57:41Z) - SqueezeLLM: Dense-and-Sparse Quantization [80.32162537942138]
LLMにおける生成推論の主なボトルネックは、単一のバッチ推論のための計算ではなく、メモリ帯域幅である。
学習後量子化フレームワークであるSqueezeLLMを導入し、最大3ビットの超低精度でのロスレス圧縮を実現する。
本フレームワークは,2次情報に基づく最適ビット精度割当を探索する感度ベース非一様量子化法と,2次情報に基づくDense-and-Sparse分解法と,2次情報量割当値と感度重み値を効率的にスパース形式で格納するDense-and-Sparse分解法である。
論文 参考訳(メタデータ) (2023-06-13T08:57:54Z) - Zero-shot Adversarial Quantization [11.722728148523366]
ゼロショット逆量子化(ZAQ: Zero-shot adversarial quantization)フレームワークを提案し,効果的な不一致推定と知識伝達を容易にする。
これは、情報的で多様なデータ例を合成するためにジェネレータを駆動する、新しい2レベル不一致モデリングによって達成される。
強力なゼロショットベースラインに対してZAQの優位性を示す3つの基本的なビジョンタスクについて広範な実験を行います。
論文 参考訳(メタデータ) (2021-03-29T01:33:34Z) - Fully Quantized Image Super-Resolution Networks [81.75002888152159]
効率と精度を両立させるためのフル量子化画像超解像フレームワーク(FQSR)を提案する。
我々は、SRResNet、SRGAN、EDSRを含む複数の主流超解像アーキテクチャに量子化スキームを適用した。
低ビット量子化を用いたFQSRは、5つのベンチマークデータセットの完全精度と比較すると、パー性能で実現できる。
論文 参考訳(メタデータ) (2020-11-29T03:53:49Z) - Once Quantization-Aware Training: High Performance Extremely Low-bit
Architecture Search [112.05977301976613]
本稿では,ネットワークアーキテクチャ検索手法と量子化手法を組み合わせることで,両者のメリットを享受することを提案する。
まず、多数の量子化モデルを取得するために、共有ステップサイズでアーキテクチャと量子化の合同トレーニングを提案する。
次に、量子化されたモデルを低ビットに転送するためにビット継承方式を導入し、さらに時間コストを削減し、量子化精度を向上させる。
論文 参考訳(メタデータ) (2020-10-09T03:52:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。