論文の概要: ChatLogic: Integrating Logic Programming with Large Language Models for Multi-Step Reasoning
- arxiv url: http://arxiv.org/abs/2407.10162v1
- Date: Sun, 14 Jul 2024 11:06:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 19:19:02.338099
- Title: ChatLogic: Integrating Logic Programming with Large Language Models for Multi-Step Reasoning
- Title(参考訳): ChatLogic: マルチステップ推論のための大規模言語モデルとロジックプログラミングの統合
- Authors: Zhongsheng Wang, Jiamou Liu, Qiming Bao, Hongfei Rong, Jingfeng Zhang,
- Abstract要約: 本稿では、推論タスクに特化したフレームワークChatLogicを紹介する。
ChatLogicでは、言語モデルが中心的な役割を担い、コントローラとして機能し、すべてのシステム運用ステージに参加する。
本稿では,論理問題を推論エンジンとのシンボリックな統合に変換する新しい手法を提案する。
- 参考スコア(独自算出の注目度): 15.468435593587808
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) such as ChatGPT and GPT-4 have demonstrated impressive capabilities in various generative tasks. However, their performance is often hampered by limitations in accessing and leveraging long-term memory, leading to specific vulnerabilities and biases, especially during long interactions. This paper introduces ChatLogic, an innovative framework specifically targeted at LLM reasoning tasks that can enhance the performance of LLMs in multi-step deductive reasoning tasks by integrating logic programming. In ChatLogic, the language model plays a central role, acting as a controller and participating in every system operation stage. We propose a novel method of converting logic problems into symbolic integration with an inference engine. This approach leverages large language models' situational understanding and imitation skills and uses symbolic memory to enhance multi-step deductive reasoning capabilities. Our results show that the ChatLogic framework significantly improves the multi-step reasoning capabilities of LLMs. The source code and data are available at \url{https://github.com/Strong-AI-Lab/ChatLogic}
- Abstract(参考訳): ChatGPTやGPT-4のような大規模言語モデル(LLM)は、様々な生成タスクにおいて印象的な機能を示している。
しかしながら、そのパフォーマンスは長期記憶へのアクセスと利用の制限によって妨げられ、特に長時間の相互作用において、特定の脆弱性やバイアスが発生する。
本稿では,LLM推論タスクを特に対象とする革新的なフレームワークであるChatLogicを紹介する。
ChatLogicでは、言語モデルが中心的な役割を担い、コントローラとして機能し、すべてのシステム運用ステージに参加する。
本稿では,論理問題を推論エンジンとのシンボリックな統合に変換する新しい手法を提案する。
このアプローチは、大規模言語モデルの状況理解と模倣のスキルを活用し、シンボリックメモリを使用して、多段階推論能力を向上させる。
その結果,ChatLogic フレームワークは LLM の多段階推論能力を大幅に向上させることがわかった。
ソースコードとデータは \url{https://github.com/Strong-AI-Lab/ChatLogic} で公開されている。
関連論文リスト
- Can Language Models Pretend Solvers? Logic Code Simulation with LLMs [3.802945676202634]
トランスフォーマーベースの大規模言語モデル(LLM)は、論理問題に対処する上で大きな可能性を示している。
この研究は、論理コードシミュレーションという新しい側面に発展し、論理プログラムの結果を予測するために論理解法をエミュレートするよう LLM に強制する。
論文 参考訳(メタデータ) (2024-03-24T11:27:16Z) - Can LLMs Compute with Reasons? [4.995189458714599]
大規模言語モデル(LLM)は複雑な数学的タスクに苦しむことが多く、誤った答えを「幻覚させる」傾向がある。
本研究では,Small LangSLMの分散ネットワークを利用した「帰納学習」手法を提案する。
論文 参考訳(メタデータ) (2024-02-19T12:04:25Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
大型言語モデル(LLM)は、自然言語と形式言語(コード)の組み合わせに基づいて訓練される
コードは、標準構文、論理一貫性、抽象化、モジュール性を備えた高レベルの目標を実行可能なステップに変換する。
論文 参考訳(メタデータ) (2024-01-01T16:51:20Z) - LMRL Gym: Benchmarks for Multi-Turn Reinforcement Learning with Language
Models [56.25156596019168]
本稿では,LMRL-Gymベンチマークを用いて,大規模言語モデル(LLM)のマルチターンRLの評価を行う。
我々のベンチマークは8つの異なる言語タスクで構成されており、複数ラウンドの言語相互作用が必要であり、オープンエンド対話やテキストゲームにおける様々なタスクをカバーする。
論文 参考訳(メタデータ) (2023-11-30T03:59:31Z) - Language Models can be Logical Solvers [99.40649402395725]
論理解法の推論過程を直接エミュレートする新しい言語モデルであるLoGiPTを導入する。
LoGiPTは、導出的ソルバの見えない推論過程を明らかにして精錬することから導かれる、新しく構築された命令チューニングデータセットに基づいて微調整される。
論文 参考訳(メタデータ) (2023-11-10T16:23:50Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
大規模言語モデル(LLM)は、形式的知識表現(KR)システムの様々な制限を克服する能力を示した。
LLMは誘導的推論において最も優れているが、誘導的推論では最も効果が低い。
モデルの性能を評価するため,シングルタスクトレーニング,マルチタスクトレーニング,および「チェーンオブ思考」知識蒸留細調整技術について検討した。
論文 参考訳(メタデータ) (2023-10-02T01:00:50Z) - Coupling Large Language Models with Logic Programming for Robust and
General Reasoning from Text [5.532477732693001]
大規模言語モデルは, 意味論的に非常に効果的な数ショットとして機能することを示す。
自然言語文を論理形式に変換し、応答集合プログラムの入力として機能する。
本手法は,bAbI, StepGame, CLUTRR, gSCAN など,いくつかのベンチマークにおいて最先端性能を実現する。
論文 参考訳(メタデータ) (2023-07-15T03:29:59Z) - Exploring Self-supervised Logic-enhanced Training for Large Language Models [59.227222647741094]
本稿では,自己指導型ポストトレーニングによる論理的知識の活用の可能性について検討する。
我々はMERItの自己回帰的目的変数を考案し、パラメータサイズが30億から13億の2つのLLM系列、すなわちFLAN-T5とLLaMAと統合する。
2つの挑戦的な論理的推論ベンチマークの結果は、LogicLLMの有効性を示している。
論文 参考訳(メタデータ) (2023-05-23T06:13:10Z) - ChatABL: Abductive Learning via Natural Language Interaction with
ChatGPT [72.83383437501577]
大規模言語モデル(LLM)は、最近数学的な能力において大きな可能性を証明している。
LLMは現在、認識、言語理解、推論能力のブリッジングに困難を抱えている。
本稿では, LLMを帰納学習フレームワークに統合する新しい手法を提案する。
論文 参考訳(メタデータ) (2023-04-21T16:23:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。