Defending Against Repetitive-based Backdoor Attacks on Semi-supervised Learning through Lens of Rate-Distortion-Perception Trade-off
- URL: http://arxiv.org/abs/2407.10180v1
- Date: Sun, 14 Jul 2024 12:42:11 GMT
- Title: Defending Against Repetitive-based Backdoor Attacks on Semi-supervised Learning through Lens of Rate-Distortion-Perception Trade-off
- Authors: Cheng-Yi Lee, Ching-Chia Kao, Cheng-Han Yeh, Chun-Shien Lu, Chia-Mu Yu, Chu-Song Chen,
- Abstract summary: Semi-supervised learning (SSL) has achieved remarkable performance with a small fraction of labeled data.
This large pool of untrusted data is extremely vulnerable to data poisoning, leading to potential backdoor attacks.
We propose a novel method, Unlabeled Data Purification (UPure), to disrupt the association between trigger patterns and target classes.
- Score: 20.713624299599722
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Semi-supervised learning (SSL) has achieved remarkable performance with a small fraction of labeled data by leveraging vast amounts of unlabeled data from the Internet. However, this large pool of untrusted data is extremely vulnerable to data poisoning, leading to potential backdoor attacks. Current backdoor defenses are not yet effective against such a vulnerability in SSL. In this study, we propose a novel method, Unlabeled Data Purification (UPure), to disrupt the association between trigger patterns and target classes by introducing perturbations in the frequency domain. By leveraging the Rate- Distortion-Perception (RDP) trade-off, we further identify the frequency band, where the perturbations are added, and justify this selection. Notably, UPure purifies poisoned unlabeled data without the need of extra clean labeled data. Extensive experiments on four benchmark datasets and five SSL algorithms demonstrate that UPure effectively reduces the attack success rate from 99.78% to 0% while maintaining model accuracy
Related papers
- Efficient Backdoor Defense in Multimodal Contrastive Learning: A Token-Level Unlearning Method for Mitigating Threats [52.94388672185062]
We propose an efficient defense mechanism against backdoor threats using a concept known as machine unlearning.
This entails strategically creating a small set of poisoned samples to aid the model's rapid unlearning of backdoor vulnerabilities.
In the backdoor unlearning process, we present a novel token-based portion unlearning training regime.
arXiv Detail & Related papers (2024-09-29T02:55:38Z) - Unlearnable Examples Detection via Iterative Filtering [84.59070204221366]
Deep neural networks are proven to be vulnerable to data poisoning attacks.
It is quite beneficial and challenging to detect poisoned samples from a mixed dataset.
We propose an Iterative Filtering approach for UEs identification.
arXiv Detail & Related papers (2024-08-15T13:26:13Z) - Nonlinear Transformations Against Unlearnable Datasets [4.876873339297269]
Automated scraping stands out as a common method for collecting data in deep learning models without the authorization of data owners.
Recent studies have begun to tackle the privacy concerns associated with this data collection method.
The data generated by those approaches, called "unlearnable" examples, are prevented "learning" by deep learning models.
arXiv Detail & Related papers (2024-06-05T03:00:47Z) - DFB: A Data-Free, Low-Budget, and High-Efficacy Clean-Label Backdoor
Attack [3.6881739970725995]
Our research introduces DFB, a data-free, low-budget, and high-efficacy clean-label backdoor Attack.
Tested on CIFAR10, Tiny-ImageNet, and TSRD, DFB demonstrates remarkable efficacy with minimal poisoning rates of just 0.1%, 0.025%, and 0.4%, respectively.
arXiv Detail & Related papers (2023-08-18T11:49:33Z) - Boosting Facial Expression Recognition by A Semi-Supervised Progressive
Teacher [54.50747989860957]
We propose a semi-supervised learning algorithm named Progressive Teacher (PT) to utilize reliable FER datasets as well as large-scale unlabeled expression images for effective training.
Experiments on widely-used databases RAF-DB and FERPlus validate the effectiveness of our method, which achieves state-of-the-art performance with accuracy of 89.57% on RAF-DB.
arXiv Detail & Related papers (2022-05-28T07:47:53Z) - Incorporating Semi-Supervised and Positive-Unlabeled Learning for
Boosting Full Reference Image Quality Assessment [73.61888777504377]
Full-reference (FR) image quality assessment (IQA) evaluates the visual quality of a distorted image by measuring its perceptual difference with pristine-quality reference.
Unlabeled data can be easily collected from an image degradation or restoration process, making it encouraging to exploit unlabeled training data to boost FR-IQA performance.
In this paper, we suggest to incorporate semi-supervised and positive-unlabeled (PU) learning for exploiting unlabeled data while mitigating the adverse effect of outliers.
arXiv Detail & Related papers (2022-04-19T09:10:06Z) - DAD: Data-free Adversarial Defense at Test Time [21.741026088202126]
Deep models are highly susceptible to adversarial attacks.
Privacy has become an important concern, restricting access to only trained models but not the training data.
We propose a completely novel problem of 'test-time adversarial defense in absence of training data and even their statistics'
arXiv Detail & Related papers (2022-04-04T15:16:13Z) - PiDAn: A Coherence Optimization Approach for Backdoor Attack Detection
and Mitigation in Deep Neural Networks [22.900501880865658]
Backdoor attacks impose a new threat in Deep Neural Networks (DNNs)
We propose PiDAn, an algorithm based on coherence optimization purifying the poisoned data.
Our PiDAn algorithm can detect more than 90% infected classes and identify 95% poisoned samples.
arXiv Detail & Related papers (2022-03-17T12:37:21Z) - Self-Tuning for Data-Efficient Deep Learning [75.34320911480008]
Self-Tuning is a novel approach to enable data-efficient deep learning.
It unifies the exploration of labeled and unlabeled data and the transfer of a pre-trained model.
It outperforms its SSL and TL counterparts on five tasks by sharp margins.
arXiv Detail & Related papers (2021-02-25T14:56:19Z) - Mitigating the Impact of Adversarial Attacks in Very Deep Networks [10.555822166916705]
Deep Neural Network (DNN) models have vulnerabilities related to security concerns.
Data poisoning-enabled perturbation attacks are complex adversarial ones that inject false data into models.
We propose an attack-agnostic-based defense method for mitigating their influence.
arXiv Detail & Related papers (2020-12-08T21:25:44Z) - How Robust are Randomized Smoothing based Defenses to Data Poisoning? [66.80663779176979]
We present a previously unrecognized threat to robust machine learning models that highlights the importance of training-data quality.
We propose a novel bilevel optimization-based data poisoning attack that degrades the robustness guarantees of certifiably robust classifiers.
Our attack is effective even when the victim trains the models from scratch using state-of-the-art robust training methods.
arXiv Detail & Related papers (2020-12-02T15:30:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.