Light Field Compression Based on Implicit Neural Representation
- URL: http://arxiv.org/abs/2407.10325v1
- Date: Tue, 7 May 2024 12:17:46 GMT
- Title: Light Field Compression Based on Implicit Neural Representation
- Authors: Henan Wang, Hanxin Zhu, Zhibo Chen,
- Abstract summary: We propose a novel light field compression scheme based on implicit neural representation to reduce redundancies between views.
We store the information of a light field image implicitly in an neural network and adopt model compression methods to further compress the implicit representation.
- Score: 10.320292226135306
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Light field, as a new data representation format in multimedia, has the ability to capture both intensity and direction of light rays. However, the additional angular information also brings a large volume of data. Classical coding methods are not effective to describe the relationship between different views, leading to redundancy left. To address this problem, we propose a novel light field compression scheme based on implicit neural representation to reduce redundancies between views. We store the information of a light field image implicitly in an neural network and adopt model compression methods to further compress the implicit representation. Extensive experiments have demonstrated the effectiveness of our proposed method, which achieves comparable rate-distortion performance as well as superior perceptual quality over traditional methods.
Related papers
- KAN See In the Dark [2.9873893715462185]
Existing low-light image enhancement methods are difficult to fit the complex nonlinear relationship between normal and low-light images due to uneven illumination and noise effects.
The recently proposed Kolmogorov-Arnold networks (KANs) feature spline-based convolutional layers and learnable activation functions, which can effectively capture nonlinear dependencies.
In this paper, we design a KAN-Block based on KANs and innovatively apply it to low-light image enhancement. This method effectively alleviates the limitations of current methods constrained by linear network structures and lack of interpretability.
arXiv Detail & Related papers (2024-09-05T10:41:17Z) - Zero-LED: Zero-Reference Lighting Estimation Diffusion Model for Low-Light Image Enhancement [2.9873893715462185]
We propose a novel zero-reference lighting estimation diffusion model for low-light image enhancement called Zero-LED.
It utilizes the stable convergence ability of diffusion models to bridge the gap between low-light domains and real normal-light domains.
It successfully alleviates the dependence on pairwise training data via zero-reference learning.
arXiv Detail & Related papers (2024-03-05T11:39:17Z) - Learning Kernel-Modulated Neural Representation for Efficient Light
Field Compression [41.24757573290883]
We design a compact neural network representation for the light field compression task.
It is composed of two types of complementary kernels: descriptive kernels (descriptors) that store scene description information learned during training, and modulatory kernels (modulators) that control the rendering of different SAIs from the queried perspectives.
arXiv Detail & Related papers (2023-07-12T12:58:03Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
Diffusion models have achieved promising results in image restoration tasks, yet suffer from time-consuming, excessive computational resource consumption, and unstable restoration.
We propose a robust and efficient Diffusion-based Low-Light image enhancement approach, dubbed DiffLL.
arXiv Detail & Related papers (2023-06-01T03:08:28Z) - TensoIR: Tensorial Inverse Rendering [51.57268311847087]
TensoIR is a novel inverse rendering approach based on tensor factorization and neural fields.
TensoRF is a state-of-the-art approach for radiance field modeling.
arXiv Detail & Related papers (2023-04-24T21:39:13Z) - InfoNeRF: Ray Entropy Minimization for Few-Shot Neural Volume Rendering [55.70938412352287]
We present an information-theoretic regularization technique for few-shot novel view synthesis based on neural implicit representation.
The proposed approach minimizes potential reconstruction inconsistency that happens due to insufficient viewpoints.
We achieve consistently improved performance compared to existing neural view synthesis methods by large margins on multiple standard benchmarks.
arXiv Detail & Related papers (2021-12-31T11:56:01Z) - Learning Discriminative Shrinkage Deep Networks for Image Deconvolution [122.79108159874426]
We propose an effective non-blind deconvolution approach by learning discriminative shrinkage functions to implicitly model these terms.
Experimental results show that the proposed method performs favorably against the state-of-the-art ones in terms of efficiency and accuracy.
arXiv Detail & Related papers (2021-11-27T12:12:57Z) - Light Field Reconstruction Using Convolutional Network on EPI and
Extended Applications [78.63280020581662]
A novel convolutional neural network (CNN)-based framework is developed for light field reconstruction from a sparse set of views.
We demonstrate the high performance and robustness of the proposed framework compared with state-of-the-art algorithms.
arXiv Detail & Related papers (2021-03-24T08:16:32Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
Blind image restoration is a common yet challenging problem in computer vision.
We propose a novel blind image restoration method, aiming to integrate both the advantages of them.
Experiments on two typical blind IR tasks, namely image denoising and super-resolution, demonstrate that the proposed method achieves superior performance over current state-of-the-arts.
arXiv Detail & Related papers (2020-08-25T03:30:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.