An Innovative Solution: AI-Based Digital Screen-Integrated Tables for Educational Settings
- URL: http://arxiv.org/abs/2410.11866v1
- Date: Tue, 08 Oct 2024 08:00:17 GMT
- Title: An Innovative Solution: AI-Based Digital Screen-Integrated Tables for Educational Settings
- Authors: S. Tamang, D. J. Bora,
- Abstract summary: Digital screen-integrated tables are designed specifically for educational settings.
Tables feature integrated digital screens controlled by a central processing unit (CPU)
The invention facilitates the collection of student performance data during classroom activities and assessments.
- Score: 0.0
- License:
- Abstract: In this paper, we have gone through different AI-Based frameworks used for various educational tasks like digital customized assignment allotment and performance monitoring, identifying slow-learners and fast-learners, etc. application describes a novel invention, digital screen-integrated tables, designed specifically for educational settings. The tables feature integrated digital screens controlled by a central processing unit (CPU), enabling synchronized display of educational content such as textbooks, presentations, exam questions, and interactive learning materials. Additionally, the invention facilitates the collection of student performance data during classroom activities and assessments. The gathered data is utilized for analysis using machine learning models to identify patterns and trends in student learning behaviours. By leveraging machine learning algorithms, educators can ascertain whether a student is a fast learner or a slow learner, based on which, the teacher can allocate more resources to the slow learners. This innovative approach aims to address the evolving needs of modern classrooms by providing a dynamic and data-driven learning environment. The unique integration of digital screens into traditional classroom furniture represents a significant advancement in educational technology. This patent filing encompasses the design, functionality, and method of operation of the digital screen-integrated tables, emphasizing their innovative features and applications in educational institutions.
Related papers
- Real-time classification of EEG signals using Machine Learning deployment [0.0]
This study proposes a machine learning-based approach for predicting the level of students' comprehension with regard to a certain topic.
A browser interface was introduced that accesses the values of the system's parameters to determine a student's level of concentration on a chosen topic.
arXiv Detail & Related papers (2024-12-27T08:14:28Z) - Learner Attentiveness and Engagement Analysis in Online Education Using Computer Vision [3.449808359602251]
This research presents a computer vision-based approach to analyze and quantify learners' attentiveness, engagement, and other affective states within online learning scenarios.
A machine learning-based algorithm is developed on top of the classification model that outputs a comprehensive attentiveness index of the learners.
An end-to-end pipeline is proposed through which learners' live video feed is processed, providing detailed attentiveness analytics of the learners to the instructors.
arXiv Detail & Related papers (2024-11-30T10:54:08Z) - Student Activity Recognition in Classroom Environments using Transfer
Learning [0.0]
This paper proposes a system for detecting and recognizing the activities of students in a classroom environment.
Xception achieved an accuracy of 93%, on the novel classroom dataset.
arXiv Detail & Related papers (2023-12-01T04:51:57Z) - Empowering Private Tutoring by Chaining Large Language Models [87.76985829144834]
This work explores the development of a full-fledged intelligent tutoring system powered by state-of-the-art large language models (LLMs)
The system is into three inter-connected core processes-interaction, reflection, and reaction.
Each process is implemented by chaining LLM-powered tools along with dynamically updated memory modules.
arXiv Detail & Related papers (2023-09-15T02:42:03Z) - Deep Active Learning for Computer Vision: Past and Future [50.19394935978135]
Despite its indispensable role for developing AI models, research on active learning is not as intensive as other research directions.
By addressing data automation challenges and coping with automated machine learning systems, active learning will facilitate democratization of AI technologies.
arXiv Detail & Related papers (2022-11-27T13:07:14Z) - Multimodal Lecture Presentations Dataset: Understanding Multimodality in
Educational Slides [57.86931911522967]
We test the capabilities of machine learning models in multimodal understanding of educational content.
Our dataset contains aligned slides and spoken language, for 180+ hours of video and 9000+ slides, with 10 lecturers from various subjects.
We introduce PolyViLT, a multimodal transformer trained with a multi-instance learning loss that is more effective than current approaches.
arXiv Detail & Related papers (2022-08-17T05:30:18Z) - Learning Knowledge Representation with Meta Knowledge Distillation for
Single Image Super-Resolution [82.89021683451432]
We propose a model-agnostic meta knowledge distillation method under the teacher-student architecture for the single image super-resolution task.
Experiments conducted on various single image super-resolution datasets demonstrate that our proposed method outperforms existing defined knowledge representation related distillation methods.
arXiv Detail & Related papers (2022-07-18T02:41:04Z) - Retrieval-Enhanced Machine Learning [110.5237983180089]
We describe a generic retrieval-enhanced machine learning framework, which includes a number of existing models as special cases.
REML challenges information retrieval conventions, presenting opportunities for novel advances in core areas, including optimization.
REML research agenda lays a foundation for a new style of information access research and paves a path towards advancing machine learning and artificial intelligence.
arXiv Detail & Related papers (2022-05-02T21:42:45Z) - Real-time Attention Span Tracking in Online Education [0.0]
This paper intends to provide a mechanism that uses the camera feed and microphone input to monitor the real-time attention level of students during online classes.
We propose a system that uses five distinct non-verbal features to calculate the attention score of the student during computer based tasks and generate real-time feedback for both students and the organization.
arXiv Detail & Related papers (2021-11-29T17:05:59Z) - Demonstrating REACT: a Real-time Educational AI-powered Classroom Tool [0.9899017174990579]
We present a new Real-time Educational AI-powered Classroom Tool that employs EDM techniques for supporting the decision-making process of educators.
ReACT is a data-driven tool with a user-friendly graphical interface.
It analyzes students' performance data and provides context-based alerts as well as recommendations to educators for course planning.
arXiv Detail & Related papers (2021-07-30T03:09:59Z) - Privileged Knowledge Distillation for Online Action Detection [114.5213840651675]
Online Action Detection (OAD) in videos is proposed as a per-frame labeling task to address the real-time prediction tasks.
This paper presents a novel learning-with-privileged based framework for online action detection where the future frames only observable at the training stages are considered as a form of privileged information.
arXiv Detail & Related papers (2020-11-18T08:52:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.