Exploring the Impact of Moire Pattern on Deepfake Detectors
- URL: http://arxiv.org/abs/2407.10399v1
- Date: Mon, 15 Jul 2024 02:39:24 GMT
- Title: Exploring the Impact of Moire Pattern on Deepfake Detectors
- Authors: Razaib Tariq, Shahroz Tariq, Simon S. Woo,
- Abstract summary: We investigate how camera-captured deepfake videos from digital screens affect detector performance.
Our findings reveal a significant decline in detector accuracy, with none achieving above 68% on average.
This underscores the critical need to address Moir'e pattern challenges in real-world deepfake detection scenarios.
- Score: 23.343014841799167
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deepfake detection is critical in mitigating the societal threats posed by manipulated videos. While various algorithms have been developed for this purpose, challenges arise when detectors operate externally, such as on smartphones, when users take a photo of deepfake images and upload on the Internet. One significant challenge in such scenarios is the presence of Moir\'e patterns, which degrade image quality and confound conventional classification algorithms, including deep neural networks (DNNs). The impact of Moir\'e patterns remains largely unexplored for deepfake detectors. In this study, we investigate how camera-captured deepfake videos from digital screens affect detector performance. We conducted experiments using two prominent datasets, CelebDF and FF++, comparing the performance of four state-of-the-art detectors on camera-captured deepfake videos with introduced Moir\'e patterns. Our findings reveal a significant decline in detector accuracy, with none achieving above 68% on average. This underscores the critical need to address Moir\'e pattern challenges in real-world deepfake detection scenarios.
Related papers
- Deepfake detection in videos with multiple faces using geometric-fakeness features [79.16635054977068]
Deepfakes of victims or public figures can be used by fraudsters for blackmailing, extorsion and financial fraud.
In our research we propose to use geometric-fakeness features (GFF) that characterize a dynamic degree of a face presence in a video.
We employ our approach to analyze videos with multiple faces that are simultaneously present in a video.
arXiv Detail & Related papers (2024-10-10T13:10:34Z) - Exploring Strengths and Weaknesses of Super-Resolution Attack in Deepfake Detection [9.372782789857803]
We explore the potential of super-resolution attacks based on different super-resolution techniques.
We show that the super-resolution process is effective in hiding the artifacts introduced by deepfake generation models but fails in hiding the traces contained in fully synthetic images.
We propose some changes to the detectors' training process to improve their robustness to this kind of attack.
arXiv Detail & Related papers (2024-10-05T15:47:34Z) - Shaking the Fake: Detecting Deepfake Videos in Real Time via Active Probes [3.6308756891251392]
Real-time deepfake, a type of generative AI, is capable of "creating" non-existing contents (e.g., swapping one's face with another) in a video.
It has been misused to produce deepfake videos for malicious purposes, including financial scams and political misinformation.
We propose SFake, a new real-time deepfake detection method that exploits deepfake models' inability to adapt to physical interference.
arXiv Detail & Related papers (2024-09-17T04:58:30Z) - Adversarial Magnification to Deceive Deepfake Detection through Super Resolution [9.372782789857803]
This paper explores the application of super resolution techniques as a possible adversarial attack in deepfake detection.
We demonstrate that minimal changes made by these methods in the visual appearance of images can have a profound impact on the performance of deepfake detection systems.
We propose a novel attack using super resolution as a quick, black-box and effective method to camouflage fake images and/or generate false alarms on pristine images.
arXiv Detail & Related papers (2024-07-02T21:17:36Z) - In Anticipation of Perfect Deepfake: Identity-anchored Artifact-agnostic Detection under Rebalanced Deepfake Detection Protocol [20.667392938528987]
We introduce the Rebalanced Deepfake Detection Protocol (RDDP) to stress-test detectors under balanced scenarios.
We present ID-Miner, a detector that identifies the puppeteer behind the disguise by focusing on motion over artifacts or appearances.
arXiv Detail & Related papers (2024-05-01T12:48:13Z) - Comparative Analysis of Deep-Fake Algorithms [0.0]
Deepfakes, also known as deep learning-based fake videos, have become a major concern in recent years.
These deepfake videos can be used for malicious purposes such as spreading misinformation, impersonating individuals, and creating fake news.
Deepfake detection technologies use various approaches such as facial recognition, motion analysis, and audio-visual synchronization.
arXiv Detail & Related papers (2023-09-06T18:17:47Z) - Learning Heavily-Degraded Prior for Underwater Object Detection [59.5084433933765]
This paper seeks transferable prior knowledge from detector-friendly images.
It is based on statistical observations that, the heavily degraded regions of detector-friendly (DFUI) and underwater images have evident feature distribution gaps.
Our method with higher speeds and less parameters still performs better than transformer-based detectors.
arXiv Detail & Related papers (2023-08-24T12:32:46Z) - Voice-Face Homogeneity Tells Deepfake [56.334968246631725]
Existing detection approaches contribute to exploring the specific artifacts in deepfake videos.
We propose to perform the deepfake detection from an unexplored voice-face matching view.
Our model obtains significantly improved performance as compared to other state-of-the-art competitors.
arXiv Detail & Related papers (2022-03-04T09:08:50Z) - M2TR: Multi-modal Multi-scale Transformers for Deepfake Detection [74.19291916812921]
forged images generated by Deepfake techniques pose a serious threat to the trustworthiness of digital information.
In this paper, we aim to capture the subtle manipulation artifacts at different scales for Deepfake detection.
We introduce a high-quality Deepfake dataset, SR-DF, which consists of 4,000 DeepFake videos generated by state-of-the-art face swapping and facial reenactment methods.
arXiv Detail & Related papers (2021-04-20T05:43:44Z) - WildDeepfake: A Challenging Real-World Dataset for Deepfake Detection [82.42495493102805]
We introduce a new dataset WildDeepfake which consists of 7,314 face sequences extracted from 707 deepfake videos collected completely from the internet.
We conduct a systematic evaluation of a set of baseline detection networks on both existing and our WildDeepfake datasets, and show that WildDeepfake is indeed a more challenging dataset, where the detection performance can decrease drastically.
arXiv Detail & Related papers (2021-01-05T11:10:32Z) - VideoForensicsHQ: Detecting High-quality Manipulated Face Videos [77.60295082172098]
We show how the performance of forgery detectors depends on the presence of artefacts that the human eye can see.
We introduce a new benchmark dataset for face video forgery detection, of unprecedented quality.
arXiv Detail & Related papers (2020-05-20T21:17:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.