Improving Hyperbolic Representations via Gromov-Wasserstein Regularization
- URL: http://arxiv.org/abs/2407.10495v1
- Date: Mon, 15 Jul 2024 07:37:31 GMT
- Title: Improving Hyperbolic Representations via Gromov-Wasserstein Regularization
- Authors: Yifei Yang, Wonjun Lee, Dongmian Zou, Gilad Lerman,
- Abstract summary: We apply the Gromov-Wasserstein (GW) distance as a novel regularization mechanism within hyperbolic neural networks.
Specifically, we treat the layers of the hyperbolic neural networks as a transport map and calculate the GW distance.
We validate that the GW distance computed based on a training set well approximates the GW distance of the underlying data distribution.
- Score: 19.933488017214
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hyperbolic representations have shown remarkable efficacy in modeling inherent hierarchies and complexities within data structures. Hyperbolic neural networks have been commonly applied for learning such representations from data, but they often fall short in preserving the geometric structures of the original feature spaces. In response to this challenge, our work applies the Gromov-Wasserstein (GW) distance as a novel regularization mechanism within hyperbolic neural networks. The GW distance quantifies how well the original data structure is maintained after embedding the data in a hyperbolic space. Specifically, we explicitly treat the layers of the hyperbolic neural networks as a transport map and calculate the GW distance accordingly. We validate that the GW distance computed based on a training set well approximates the GW distance of the underlying data distribution. Our approach demonstrates consistent enhancements over current state-of-the-art methods across various tasks, including few-shot image classification, as well as semi-supervised graph link prediction and node classification.
Related papers
- Deep Manifold Graph Auto-Encoder for Attributed Graph Embedding [51.75091298017941]
This paper proposes a novel Deep Manifold (Variational) Graph Auto-Encoder (DMVGAE/DMGAE) for attributed graph data.
The proposed method surpasses state-of-the-art baseline algorithms by a significant margin on different downstream tasks across popular datasets.
arXiv Detail & Related papers (2024-01-12T17:57:07Z) - Addressing Heterophily in Node Classification with Graph Echo State
Networks [11.52174067809364]
We address the challenges of heterophilic graphs with Graph Echo State Network (GESN) for node classification.
GESN is a reservoir computing model for graphs, where node embeddings are computed by an untrained message-passing function.
Our experiments show that reservoir models are able to achieve better or comparable accuracy with respect to most fully trained deep models.
arXiv Detail & Related papers (2023-05-14T19:42:31Z) - HGWaveNet: A Hyperbolic Graph Neural Network for Temporal Link
Prediction [9.110162634132827]
We propose HGWaveNet, a novel hyperbolic graph neural network that fully exploits the fitness between hyperbolic spaces and data distributions for temporal link prediction.
Specifically, we design two key modules to learn the spatial topological structures and temporal evolutionary information separately.
The results show a relative improvement by up to 6.67% on AUC for temporal link prediction over SOTA methods.
arXiv Detail & Related papers (2023-04-14T07:07:00Z) - Dynamic Graph Message Passing Networks for Visual Recognition [112.49513303433606]
Modelling long-range dependencies is critical for scene understanding tasks in computer vision.
A fully-connected graph is beneficial for such modelling, but its computational overhead is prohibitive.
We propose a dynamic graph message passing network, that significantly reduces the computational complexity.
arXiv Detail & Related papers (2022-09-20T14:41:37Z) - Text Enriched Sparse Hyperbolic Graph Convolutional Networks [21.83127488157701]
Graph Neural Networks (GNNs) and their hyperbolic variants provide a promising approach to encode such networks in a low-dimensional latent space.
We propose Text Enriched Sparse Hyperbolic Graph Convolution Network (TESH-GCN) to capture the graph's metapath structures using semantic signals.
Our model outperforms the current state-of-the-art approaches by a large margin on the task of link prediction.
arXiv Detail & Related papers (2022-07-06T00:23:35Z) - Spatial-Temporal Adaptive Graph Convolution with Attention Network for
Traffic Forecasting [4.1700160312787125]
We propose a novel network, Spatial-Temporal Adaptive graph convolution with Attention Network (STAAN) for traffic forecasting.
Firstly, we adopt an adaptive dependency matrix instead of using a pre-defined matrix during GCN processing to infer the inter-dependencies among nodes.
Secondly, we integrate PW-attention based on graph attention network which is designed for global dependency, and GCN as spatial block.
arXiv Detail & Related papers (2022-06-07T09:08:35Z) - Learning Smooth Neural Functions via Lipschitz Regularization [92.42667575719048]
We introduce a novel regularization designed to encourage smooth latent spaces in neural fields.
Compared with prior Lipschitz regularized networks, ours is computationally fast and can be implemented in four lines of code.
arXiv Detail & Related papers (2022-02-16T21:24:54Z) - Hyperbolic Variational Graph Neural Network for Modeling Dynamic Graphs [77.33781731432163]
We learn dynamic graph representation in hyperbolic space, for the first time, which aims to infer node representations.
We present a novel Hyperbolic Variational Graph Network, referred to as HVGNN.
In particular, to model the dynamics, we introduce a Temporal GNN (TGNN) based on a theoretically grounded time encoding approach.
arXiv Detail & Related papers (2021-04-06T01:44:15Z) - Spatio-Temporal Inception Graph Convolutional Networks for
Skeleton-Based Action Recognition [126.51241919472356]
We design a simple and highly modularized graph convolutional network architecture for skeleton-based action recognition.
Our network is constructed by repeating a building block that aggregates multi-granularity information from both the spatial and temporal paths.
arXiv Detail & Related papers (2020-11-26T14:43:04Z) - Isometric Graph Neural Networks [5.306334746787569]
We propose a technique to learn Isometric Graph Neural Networks (IGNN)
IGNN requires changing the input representation space and loss function to enable any GNN algorithm to generate representations that reflect distances between nodes.
We observe a consistent and substantial improvement as high as 400% in Kendall's Tau (KT)
arXiv Detail & Related papers (2020-06-16T22:51:13Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
An important challenge in the field of exponential random graphs (ERGs) is the fitting of non-trivial ERGs on large graphs.
We propose an approximative framework to such non-trivial ERGs that result in dyadic independence (i.e., edge independent) distributions.
Our methods are scalable to sparse graphs consisting of millions of nodes.
arXiv Detail & Related papers (2020-02-14T11:42:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.