Encoded probabilistic imaginary-time evolution on a trapped-ion quantum computer for ground and excited states of spin qubits
- URL: http://arxiv.org/abs/2407.10555v1
- Date: Mon, 15 Jul 2024 09:07:54 GMT
- Title: Encoded probabilistic imaginary-time evolution on a trapped-ion quantum computer for ground and excited states of spin qubits
- Authors: Hirofumi Nishi, Yuki Takei, Taichi Kosugi, Shunsuke Mieda, Yutaka Natsume, Takeshi Aoyagi, Yu-ichiro Matsushita,
- Abstract summary: We employ a quantum computer to solve a low-energy effective Hamiltonian for spin defects in diamond and aluminium nitride.
The spin singlet state is difficult to compute using density functional theory (DFT), which should be described by multiple Slater determinants.
This is the first instance of an encoded PITE circuit being executed on a trapped-ion quantum computer.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this study, we employed a quantum computer to solve a low-energy effective Hamiltonian for spin defects in diamond (so-called NV centre) and wurtzite-type aluminium nitride, which are anticipated to be qubits. The probabilistic imaginary-time evolution (PITE) method, designed for use in a fault-tolerant quantum computer (FTQC) era, was employed to calculate the ground and excited states of the spin singlet state, as represented by the effective Hamiltonian. It is difficult to compute the spin singlet state correctly using density functional theory (DFT), which should be described by multiple Slater determinants. To mitigate the effects of quantum errors inherent in current quantum computers, we implemented a $[[ n+2,n,2 ]]$ quantum error detection (QED) code called the Iceberg code. Despite the inevitable destruction of the encoded state resulting from the measurement of the ancilla qubit at each PITE step, we were able to successfully re-encode and recover the logical success state. In the implementation of the PITE, it was observed that the effective Hamiltonian comprises large components of the diagonal part and a relatively small non-diagonal part, which is frequently the case with quantum chemistry calculations. An efficient implementation of Hamiltonian simulations, in which the diagonal components dominate, was developed on a quantum computer based on the second-order Trotter-Suzuki decomposition. This is the first instance of an encoded PITE circuit being executed on a trapped-ion quantum computer. Our results demonstrate that QED effectively reduces quantum errors and that we successfully obtained both the ground and excited states of the spin singlet state. Our demonstration clearly manifests that Zr$_{\rm Al}$V$_{\rm N}$, Ti$_{\rm Al}$V$_{\rm N}$, and Hf$_{\rm Al}$V$_{\rm N}$ defects have a high potential as spin qubits for quantum sensors.
Related papers
- Robustness of near-thermal dynamics on digital quantum computers [4.124390946636936]
We show that Trotterized quantum circuits are more robust to both quantum gate errors and Trotter (discretization) errors than is widely assumed.
We use a new theoretical tool -- a statistical ensemble of random product states that approximates a thermal state.
arXiv Detail & Related papers (2024-10-14T17:57:03Z) - Spin coupling is all you need: Encoding strong electron correlation on quantum computers [0.0]
We show that quantum computers can efficiently simulate strongly correlated molecular systems by directly encoding the dominant entanglement structure in the form of spin-coupled initial states.
Our work paves the way towards scalable quantum simulation of electronic structure for classically challenging systems.
arXiv Detail & Related papers (2024-04-29T17:14:21Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
Quantum many-body problems are central to demystifying some exotic quantum phenomena, e.g., high-temperature superconductors.
The combination of neural networks (NN) for representing quantum states, and the Variational Monte Carlo (VMC) algorithm, has been shown to be a promising method for solving such problems.
We propose a NN architecture called Vector-Quantized Neural Quantum States (VQ-NQS) that utilizes vector-quantization techniques to leverage redundancies in the local-energy calculations of the VMC algorithm.
arXiv Detail & Related papers (2022-12-21T19:00:04Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Simulating the electronic structure of spin defects on quantum computers [0.0]
We present calculations of the ground and excited state energies of spin defects in solids carried out on a quantum computer.
We focus on the negatively charged nitrogen vacancy center in diamond and on the double vacancy in 4H-SiC.
arXiv Detail & Related papers (2021-12-08T17:55:23Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
Current generation noisy intermediate-scale quantum (NISQ) computers are severely limited in chip size and error rates.
We derive localized circuit transformations to efficiently compress quantum circuits for simulation of certain spin Hamiltonians known as free fermions.
The proposed numerical circuit compression algorithm behaves backward stable and scales cubically in the number of spins enabling circuit synthesis beyond $mathcalO(103)$ spins.
arXiv Detail & Related papers (2021-08-06T19:38:03Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z) - Realizing topologically ordered states on a quantum processor [0.0845004185087851]
Topologically ordered states has proven to be extremely challenging in both condensed matter and synthetic quantum systems.
We prepare the ground state of the toric code Hamiltonian using an efficient quantum circuit on a superconducting quantum processor.
arXiv Detail & Related papers (2021-04-02T18:00:01Z) - Hardware-efficient error-correcting codes for large nuclear spins [62.997667081978825]
We present a hardware-efficient quantum protocol that corrects phase flips of a nuclear spin using explicit experimentally feasible operations.
Results provide a realizable blueprint for a corrected spin-based qubit.
arXiv Detail & Related papers (2021-03-15T17:14:48Z) - Roadmap for quantum simulation of the fractional quantum Hall effect [0.0]
A major motivation for building a quantum computer is that it provides a tool to efficiently simulate strongly correlated quantum systems.
In this work, we present a detailed roadmap on how to simulate a two-dimensional electron gas---cooled to absolute zero and pierced by a strong magnetic field---on a quantum computer.
arXiv Detail & Related papers (2020-03-05T10:17:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.