Leveraging Hybrid Intelligence Towards Sustainable and Energy-Efficient Machine Learning
- URL: http://arxiv.org/abs/2407.10580v1
- Date: Mon, 15 Jul 2024 09:58:27 GMT
- Title: Leveraging Hybrid Intelligence Towards Sustainable and Energy-Efficient Machine Learning
- Authors: Daniel Geissler, Paul Lukowicz,
- Abstract summary: Hybrid intelligence aims to enhance decision-making, problem-solving, and overall system performance.
This paper presents an approach to leverage Hybrid Intelligence towards sustainable and energy-aware machine learning.
- Score: 2.7839573046784127
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hybrid intelligence aims to enhance decision-making, problem-solving, and overall system performance by combining the strengths of both, human cognitive abilities and artificial intelligence. With the rise of Large Language Models (LLM), progressively participating as smart agents to accelerate machine learning development, Hybrid Intelligence is becoming an increasingly important topic for effective interaction between humans and machines. This paper presents an approach to leverage Hybrid Intelligence towards sustainable and energy-aware machine learning. When developing machine learning models, final model performance commonly rules the optimization process while the efficiency of the process itself is often neglected. Moreover, in recent times, energy efficiency has become equally crucial due to the significant environmental impact of complex and large-scale computational processes. The contribution of this work covers the interactive inclusion of secondary knowledge sources through Human-in-the-loop (HITL) and LLM agents to stress out and further resolve inefficiencies in the machine learning development process.
Related papers
- Generative AI and Its Impact on Personalized Intelligent Tutoring Systems [0.0]
Generative AI enables personalized education through dynamic content generation, real-time feedback, and adaptive learning pathways.
Report explores key applications such as automated question generation, customized feedback mechanisms, and interactive dialogue systems.
Future directions highlight the potential advancements in multimodal AI integration, emotional intelligence in tutoring systems, and the ethical implications of AI-driven education.
arXiv Detail & Related papers (2024-10-14T16:01:01Z) - Fusion Intelligence: Confluence of Natural and Artificial Intelligence for Enhanced Problem-Solving Efficiency [3.9233394969004713]
Fusion Intelligence (FI) is a bio-inspired intelligent system, where the innate sensing, intelligence and unique actuation abilities of biological organisms are integrated with the computational power of Artificial Intelligence (AI)
We demonstrate FI's potential to enhance agricultural IoT system performance through a simulated case study on improving insect pollination efficacy (entomophily)
arXiv Detail & Related papers (2024-05-16T02:10:30Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - Evolutionary Dynamic Optimization and Machine Learning [0.0]
Evolutionary Computation (EC) has emerged as a powerful field of Artificial Intelligence, inspired by nature's mechanisms of gradual development.
To overcome these limitations, researchers have integrated learning algorithms with evolutionary techniques.
This integration harnesses the valuable data generated by EC algorithms during iterative searches, providing insights into the search space and population dynamics.
arXiv Detail & Related papers (2023-10-12T22:28:53Z) - Empowering Private Tutoring by Chaining Large Language Models [87.76985829144834]
This work explores the development of a full-fledged intelligent tutoring system powered by state-of-the-art large language models (LLMs)
The system is into three inter-connected core processes-interaction, reflection, and reaction.
Each process is implemented by chaining LLM-powered tools along with dynamically updated memory modules.
arXiv Detail & Related papers (2023-09-15T02:42:03Z) - Hybrid ASR for Resource-Constrained Robots: HMM - Deep Learning Fusion [0.0]
This paper presents a novel hybrid Automatic Speech Recognition (ASR) system designed specifically for resource-constrained robots.
The proposed approach combines Hidden Markov Models (HMMs) with deep learning models and leverages socket programming to distribute processing tasks effectively.
In this architecture, the HMM-based processing takes place within the robot, while a separate PC handles the deep learning model.
arXiv Detail & Related papers (2023-09-11T15:28:19Z) - Incremental procedural and sensorimotor learning in cognitive humanoid
robots [52.77024349608834]
This work presents a cognitive agent that can learn procedures incrementally.
We show the cognitive functions required in each substage and how adding new functions helps address tasks previously unsolved by the agent.
Results show that this approach is capable of solving complex tasks incrementally.
arXiv Detail & Related papers (2023-04-30T22:51:31Z) - Ontology in Hybrid Intelligence: a concise literature review [3.9160947065896803]
Hybrid Intelligence is gaining popularity to refer to a balanced coexistence between human and artificial intelligence.
Ontology improves quality and accuracy, as well as a specific role to enable extended interoperability.
An application-oriented analysis has shown a significant role in present systems (70+% the cases) and, potentially, in future systems.
arXiv Detail & Related papers (2023-03-30T09:55:29Z) - From Machine Learning to Robotics: Challenges and Opportunities for
Embodied Intelligence [113.06484656032978]
Article argues that embodied intelligence is a key driver for the advancement of machine learning technology.
We highlight challenges and opportunities specific to embodied intelligence.
We propose research directions which may significantly advance the state-of-the-art in robot learning.
arXiv Detail & Related papers (2021-10-28T16:04:01Z) - Energy-Efficient Multi-Orchestrator Mobile Edge Learning [54.28419430315478]
Mobile Edge Learning (MEL) is a collaborative learning paradigm that features distributed training of Machine Learning (ML) models over edge devices.
In MEL, possible coexistence of multiple learning tasks with different datasets may arise.
We propose lightweight algorithms that can achieve near-optimal performance and facilitate the trade-offs between energy consumption, accuracy, and solution complexity.
arXiv Detail & Related papers (2021-09-02T07:37:10Z) - Distributed and Democratized Learning: Philosophy and Research
Challenges [80.39805582015133]
We propose a novel design philosophy called democratized learning (Dem-AI)
Inspired by the societal groups of humans, the specialized groups of learning agents in the proposed Dem-AI system are self-organized in a hierarchical structure to collectively perform learning tasks more efficiently.
We present a reference design as a guideline to realize future Dem-AI systems, inspired by various interdisciplinary fields.
arXiv Detail & Related papers (2020-03-18T08:45:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.