Balancing the Scales: Reinforcement Learning for Fair Classification
- URL: http://arxiv.org/abs/2407.10629v1
- Date: Mon, 15 Jul 2024 11:28:16 GMT
- Title: Balancing the Scales: Reinforcement Learning for Fair Classification
- Authors: Leon Eshuijs, Shihan Wang, Antske Fokkens,
- Abstract summary: Fairness in classification tasks has traditionally focused on bias removal from neural representations.
Recent trends favor algorithmic methods that embed fairness into the training process.
We employ the contextual multi-armed bandit framework and adapt three popular RL algorithms to suit our objectives.
- Score: 2.262217900462841
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fairness in classification tasks has traditionally focused on bias removal from neural representations, but recent trends favor algorithmic methods that embed fairness into the training process. These methods steer models towards fair performance, preventing potential elimination of valuable information that arises from representation manipulation. Reinforcement Learning (RL), with its capacity for learning through interaction and adjusting reward functions to encourage desired behaviors, emerges as a promising tool in this domain. In this paper, we explore the usage of RL to address bias in imbalanced classification by scaling the reward function to mitigate bias. We employ the contextual multi-armed bandit framework and adapt three popular RL algorithms to suit our objectives, demonstrating a novel approach to mitigating bias.
Related papers
- Granularity Matters in Long-Tail Learning [62.30734737735273]
We offer a novel perspective on long-tail learning, inspired by an observation: datasets with finer granularity tend to be less affected by data imbalance.
We introduce open-set auxiliary classes that are visually similar to existing ones, aiming to enhance representation learning for both head and tail classes.
To prevent the overwhelming presence of auxiliary classes from disrupting training, we introduce a neighbor-silencing loss.
arXiv Detail & Related papers (2024-10-21T13:06:21Z) - Using Part-based Representations for Explainable Deep Reinforcement Learning [30.566205347443113]
We propose a non-negative training approach for actor models in Deep Reinforcement Learning.
We demonstrate the effectiveness of the proposed approach using the well-known Cartpole benchmark.
arXiv Detail & Related papers (2024-08-21T09:21:59Z) - Rethinking Classifier Re-Training in Long-Tailed Recognition: A Simple
Logits Retargeting Approach [102.0769560460338]
We develop a simple logits approach (LORT) without the requirement of prior knowledge of the number of samples per class.
Our method achieves state-of-the-art performance on various imbalanced datasets, including CIFAR100-LT, ImageNet-LT, and iNaturalist 2018.
arXiv Detail & Related papers (2024-03-01T03:27:08Z) - Post-Training Overfitting Mitigation in DNN Classifiers [31.513866929577336]
We show that post-training MM-based regularization substantially mitigates non-malicious overfitting due to class imbalances and overtraining.
Unlike adversarial training, which provides some resilience against attacks but which harms clean (attack-free) generalization, we demonstrate an approach originating from adversarial learning.
arXiv Detail & Related papers (2023-09-28T20:16:24Z) - D-CALM: A Dynamic Clustering-based Active Learning Approach for
Mitigating Bias [13.008323851750442]
In this paper, we propose a novel adaptive clustering-based active learning algorithm, D-CALM, that dynamically adjusts clustering and annotation efforts.
Experiments on eight datasets for a diverse set of text classification tasks, including emotion, hatespeech, dialog act, and book type detection, demonstrate that our proposed algorithm significantly outperforms baseline AL approaches.
arXiv Detail & Related papers (2023-05-26T15:17:43Z) - Scaling Laws Beyond Backpropagation [64.0476282000118]
We study the ability of Direct Feedback Alignment to train causal decoder-only Transformers efficiently.
We find that DFA fails to offer more efficient scaling than backpropagation.
arXiv Detail & Related papers (2022-10-26T10:09:14Z) - Contrastive Learning for Fair Representations [50.95604482330149]
Trained classification models can unintentionally lead to biased representations and predictions.
Existing debiasing methods for classification models, such as adversarial training, are often expensive to train and difficult to optimise.
We propose a method for mitigating bias by incorporating contrastive learning, in which instances sharing the same class label are encouraged to have similar representations.
arXiv Detail & Related papers (2021-09-22T10:47:51Z) - Improving Music Performance Assessment with Contrastive Learning [78.8942067357231]
This study investigates contrastive learning as a potential method to improve existing MPA systems.
We introduce a weighted contrastive loss suitable for regression tasks applied to a convolutional neural network.
Our results show that contrastive-based methods are able to match and exceed SoTA performance for MPA regression tasks.
arXiv Detail & Related papers (2021-08-03T19:24:25Z) - Generative Adversarial Reward Learning for Generalized Behavior Tendency
Inference [71.11416263370823]
We propose a generative inverse reinforcement learning for user behavioral preference modelling.
Our model can automatically learn the rewards from user's actions based on discriminative actor-critic network and Wasserstein GAN.
arXiv Detail & Related papers (2021-05-03T13:14:25Z) - Fair Meta-Learning For Few-Shot Classification [7.672769260569742]
A machine learning algorithm trained on biased data tends to make unfair predictions.
We propose a novel fair fast-adapted few-shot meta-learning approach that efficiently mitigates biases during meta-train.
We empirically demonstrate that our proposed approach efficiently mitigates biases on model output and generalizes both accuracy and fairness to unseen tasks.
arXiv Detail & Related papers (2020-09-23T22:33:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.