論文の概要: Detecting Omissions in Geographic Maps through Computer Vision
- arxiv url: http://arxiv.org/abs/2407.10709v1
- Date: Mon, 15 Jul 2024 13:26:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 15:11:40.911341
- Title: Detecting Omissions in Geographic Maps through Computer Vision
- Title(参考訳): コンピュータビジョンによる地理地図の欠落検出
- Authors: Phuc D. A. Nguyen, Anh Do, Minh Hoai,
- Abstract要約: 特定地域や特徴ランドマークを指定した地図を自動的に識別する手法を開発し,評価する。
地図を非マップと区別し、表示された領域の精度を確認し、特定のランドマーク名の有無を確認する。
このデータセットの実験では、特定領域のランドマークを除く地図を識別するために、この手法が85.51%のF1スコアを達成することを示した。
- 参考スコア(独自算出の注目度): 18.36056648425432
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper explores the application of computer vision technologies to the analysis of maps, an area with substantial historical, cultural, and political significance. Our focus is on developing and evaluating a method for automatically identifying maps that depict specific regions and feature landmarks with designated names, a task that involves complex challenges due to the diverse styles and methods used in map creation. We address three main subtasks: differentiating maps from non-maps, verifying the accuracy of the region depicted, and confirming the presence or absence of particular landmark names through advanced text recognition techniques. Our approach utilizes a Convolutional Neural Network and transfer learning to differentiate maps from non-maps, verify the accuracy of depicted regions, and confirm landmark names through advanced text recognition. We also introduce the VinMap dataset, containing annotated map images of Vietnam, to train and test our method. Experiments on this dataset demonstrate that our technique achieves F1-score of 85.51% for identifying maps excluding specific territorial landmarks. This result suggests practical utility and indicates areas for future improvement.
- Abstract(参考訳): 本稿では,歴史的,文化的,政治的に重要な領域である地図解析へのコンピュータビジョン技術の応用について検討する。
本研究の目的は,地図作成において多種多様なスタイルや手法によって複雑な課題を伴い,特定地域や特徴的ランドマークを指定した地図を自動的に識別する手法の開発と評価である。
地図を非マップと区別し、表示された領域の精度を確認し、高度なテキスト認識技術によって特定のランドマーク名の有無を確認する。
提案手法では,畳み込みニューラルネットワークとトランスファーラーニングを用いて,地図と非マップを区別し,描写された領域の精度を確認し,高度なテキスト認識によりランドマーク名を確認する。
また,ベトナムの注釈付き地図画像を含むVinMapデータセットを導入し,本手法の訓練と試験を行った。
このデータセットの実験では、特定領域のランドマークを除く地図を識別するために、この手法が85.51%のF1スコアを達成することを示した。
この結果は実用性を示し、今後の改善の分野を示す。
関連論文リスト
- Neural Semantic Map-Learning for Autonomous Vehicles [85.8425492858912]
本稿では,道路環境のコヒーレントな地図を作成するために,車両群から収集した局所部分写像を中心インスタンスに融合するマッピングシステムを提案する。
本手法は,シーン特異的なニューラルサイン距離場を用いて,雑音と不完全局所部分写像を併用する。
我々は,記憶効率の高いスパース機能グリッドを活用して大規模にスケールし,シーン再構築における不確実性をモデル化するための信頼スコアを導入する。
論文 参考訳(メタデータ) (2024-10-10T10:10:03Z) - Local map Construction Methods with SD map: A Novel Survey [4.493862236612883]
本稿では,ローカルマップ認識手法の事前情報としてSDマップの統合の最近の進歩を概観する。
この記事は、この分野で広く普及している現在のトレンドと方法論を理解するために研究者を導くことを目的として、関連する問題と今後の課題に対処する。
論文 参考訳(メタデータ) (2024-09-04T03:41:42Z) - Mapping High-level Semantic Regions in Indoor Environments without
Object Recognition [50.624970503498226]
本研究では,屋内環境における埋め込みナビゲーションによる意味領域マッピング手法を提案する。
地域識別を実現するために,視覚言語モデルを用いて地図作成のためのシーン情報を提供する。
グローバルなフレームにエゴセントリックなシーン理解を投影することにより、提案手法は各場所の可能な領域ラベル上の分布としてのセマンティックマップを生成する。
論文 参考訳(メタデータ) (2024-03-11T18:09:50Z) - CartoMark: a benchmark dataset for map pattern recognition and 1 map
content retrieval with machine intelligence [9.652629004863364]
我々は,地図テキストアノテーション認識,地図シーン分類,地図超解像再構成,地図スタイル転送のための大規模ベンチマークデータセットを開発した。
これらの良好なラベル付きデータセットは、マップ特徴の検出、マップパターン認識、マップコンテンツ検索を行う最先端のマシンインテリジェンス技術を促進する。
論文 参考訳(メタデータ) (2023-12-14T01:54:38Z) - Neural Semantic Surface Maps [52.61017226479506]
本稿では,2つの属とゼロの形状の地図を自動計算する手法を提案する。
提案手法は,手動のアノテーションや3Dトレーニングデータ要求を排除し,意味的表面-表面マップを生成する。
論文 参考訳(メタデータ) (2023-09-09T16:21:56Z) - Point-Level Region Contrast for Object Detection Pre-Training [147.47349344401806]
本稿では,物体検出作業のための自己教師付き事前学習手法である点レベル領域コントラストを提案する。
提案手法は,異なる領域から個々の点対を直接抽出することにより,コントラスト学習を行う。
領域ごとの集約表現と比較すると,入力領域の品質の変化に対して,我々のアプローチはより堅牢である。
論文 参考訳(メタデータ) (2022-02-09T18:56:41Z) - Synthetic Map Generation to Provide Unlimited Training Data for
Historical Map Text Detection [5.872532529455414]
そこで本研究では,テキスト検出モデルのトレーニングのために,注釈付き歴史地図画像の無限量の自動生成手法を提案する。
我々は,現在最先端のテキスト検出モデルが,合成歴史地図の恩恵を受けることを示す。
論文 参考訳(メタデータ) (2021-12-12T00:27:03Z) - Narrative Cartography with Knowledge Graphs [10.715484138543069]
ナレッジグラフ(KG)を用いたナラティブカルトグラフィーの考え方を提案する。
データ取得と統合の課題に取り組むため、我々はKGベースのGeoEnrichmentツールボックスセットを開発した。
このツールの助けを借りて、KGから取得したデータはGIS形式で直接実体化される。
論文 参考訳(メタデータ) (2021-12-02T04:01:17Z) - Hex2vec -- Context-Aware Embedding H3 Hexagons with OpenStreetMap Tags [9.743315439284407]
都市機能と土地利用に関する地域ベクトル表現をマイクロエリアグリッドで学習するための最初のアプローチを提案する。
土地利用, 建築, 都市域の機能, 水の種類, 緑その他の自然地域の主な特徴に関連するOpenStreetMapタグのサブセットを同定する。
結果として得られるベクトル表現は、ベクトルベースの言語モデルに見られるものと同様、地図特性のセマンティック構造を示す。
論文 参考訳(メタデータ) (2021-11-01T14:22:53Z) - Semantic Image Alignment for Vehicle Localization [111.59616433224662]
単眼カメラからのセマンティックセグメンテーションを用いた高密度セマンティックマップにおける車両位置推定手法を提案する。
既存の視覚的ローカライゼーションアプローチとは対照的に、システムは追加のキーポイント機能、手作りのローカライゼーションランドマーク抽出器、高価なLiDARセンサーを必要としない。
論文 参考訳(メタデータ) (2021-10-08T14:40:15Z) - Structured Landmark Detection via Topology-Adapting Deep Graph Learning [75.20602712947016]
解剖学的顔と医学的ランドマーク検出のための新しいトポロジ適応深層グラフ学習手法を提案する。
提案手法は局所像特徴と大域形状特徴の両方を利用するグラフ信号を構成する。
3つの公開顔画像データセット(WFLW、300W、COFW-68)と3つの現実世界のX線医学データセット(ケパロメトリ、ハンド、ペルビス)で実験を行った。
論文 参考訳(メタデータ) (2020-04-17T11:55:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。