論文の概要: MSegRNN:Enhanced SegRNN Model with Mamba for Long-Term Time Series Forecasting
- arxiv url: http://arxiv.org/abs/2407.10768v2
- Date: Mon, 22 Jul 2024 10:26:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-24 00:12:27.278632
- Title: MSegRNN:Enhanced SegRNN Model with Mamba for Long-Term Time Series Forecasting
- Title(参考訳): MSegRNN:長期連続予測のためのMambaを用いたSegRNNモデルの拡張
- Authors: GaoXiang Zhao, XiaoQiang Wang,
- Abstract要約: 本研究では,微調整された単一層マンバ構造を用いて情報を前処理するSegRNNの変種を紹介する。
暗黙のセグメンテーションと残留構造をモデルエンコーディングセクションに組み込んで、固有のデータ反復サイクルをさらに削減する。
この変種はMSegRNNと呼ばれ、Mamba構造を用いて有用な情報を選択し、変換シーケンスを生成する。
- 参考スコア(独自算出の注目度): 3.8747319171189947
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The field of long-term time series forecasting demands handling extensive look-back windows and long-range prediction steps, posing significant challenges for RNN-based methodologies. Among these, SegRNN, a robust RNN-driven model, has gained considerable attention in LTSF analysis for achieving state-of-the-art results while maintaining a remarkably streamlined architecture. Concurrently, the Mamba structure has demonstrated its advantages in small to medium-sized models due to its capability for information selection. This study introduces a variant of SegRNN that preprocesses information using a fine-tuned single-layer Mamba structure. Additionally, it incorporates implicit segmentation and residual structures into the model's encoding section to further reduce the inherent data iterative cycles of RNN architectures and implicitly integrate inter-channel correlations. This variant, named MSegRNN, utilizes the Mamba structure to select useful information, resulting in a transformed sequence. The linear-strategy-adapted derivative retains the superior memory efficiency of the original SegRNN while demonstrating enhanced performance. Empirical evaluations on real-world LTSF datasets demonstrate the superior performance of our model, thereby contributing to the advancement of LTSF methodologies.
- Abstract(参考訳): 長期連続予測の分野は、広範囲の見返りウィンドウと長距離予測ステップを扱う要求を処理し、RNNベースの方法論に重大な課題を提起している。
これらのうち、堅牢なRNN駆動モデルであるSegRNNは、最先端のアーキテクチャを維持しながら、最先端の成果を達成するためにLTSF分析にかなりの注目を集めている。
同時に、Mamba構造は、情報選択の能力により、中小のモデルでその利点を実証している。
本研究では,微調整された単一層マンバ構造を用いて情報を前処理するSegRNNの変種を紹介する。
さらに、暗黙のセグメンテーションと残留構造をモデルエンコーディングセクションに組み込んで、RNNアーキテクチャ固有のデータ反復サイクルをさらに減らし、チャネル間相関を暗黙的に統合する。
この変種はMSegRNNと呼ばれ、Mamba構造を用いて有用な情報を選択し、変換シーケンスを生成する。
線形戦略適応微分は、性能を向上しつつ、元のSegRNNの優れたメモリ効率を保っている。
実世界のLTSFデータセットに対する実証的な評価は,本モデルの優れた性能を示し,LTSF手法の進歩に寄与する。
関連論文リスト
- Concrete Dense Network for Long-Sequence Time Series Clustering [4.307648859471193]
時系列クラスタリングは、時間的パターンを発見するためのデータ分析において基本である。
深部時間クラスタリング手法は、ニューラルネットワークのエンドツーエンドトレーニングに標準k平均を組み込もうとしている。
LoSTerは、時系列クラスタリング問題に対する新しい密集型オートエンコーダアーキテクチャである。
論文 参考訳(メタデータ) (2024-05-08T12:31:35Z) - A Distance Correlation-Based Approach to Characterize the Effectiveness of Recurrent Neural Networks for Time Series Forecasting [1.9950682531209158]
距離相関の多元的指標を用いて,RNN成分と時系列特性をリンクする手法を提案する。
RNN活性化層が時系列のラグ構造をよく学習していることを実証的に示す。
また,アクティベーション層は移動平均およびヘテロスケダティック時系列過程を適切にモデル化できないことを示す。
論文 参考訳(メタデータ) (2023-07-28T22:32:08Z) - Disentangling Structured Components: Towards Adaptive, Interpretable and
Scalable Time Series Forecasting [52.47493322446537]
本研究では,時空間パターンの各コンポーネントを個別にモデル化する適応的,解釈可能,スケーラブルな予測フレームワークを開発する。
SCNNは、空間時間パターンの潜在構造を算術的に特徴づける、MSSの事前定義された生成プロセスで動作する。
SCNNが3つの実世界のデータセットの最先端モデルよりも優れた性能を達成できることを示すため、大規模な実験が行われた。
論文 参考訳(メタデータ) (2023-05-22T13:39:44Z) - Stock Trend Prediction: A Semantic Segmentation Approach [3.718476964451589]
完全2次元畳み込みエンコーダデコーダを用いた長期株価変動傾向の予測手法を提案する。
我々のCNNの階層構造は、長期的・短期的な関係を効果的に捉えることができる。
論文 参考訳(メタデータ) (2023-03-09T01:29:09Z) - FormerTime: Hierarchical Multi-Scale Representations for Multivariate
Time Series Classification [53.55504611255664]
formerTimeは、多変量時系列分類タスクの分類能力を改善する階層的表現モデルである。
1)時系列データから階層的なマルチスケール表現を学習し、(2)トランスフォーマーと畳み込みネットワークの強さを継承し、(3)自己維持メカニズムによって引き起こされる効率の課題に取り組む。
論文 参考訳(メタデータ) (2023-02-20T07:46:14Z) - HyperTime: Implicit Neural Representation for Time Series [131.57172578210256]
暗黙の神経表現(INR)は、データの正確で解像度に依存しないエンコーディングを提供する強力なツールとして最近登場した。
本稿では、INRを用いて時系列の表現を分析し、再構成精度とトレーニング収束速度の点で異なるアクティベーション関数を比較した。
本稿では,INRを利用して時系列データセット全体の圧縮潜在表現を学習するハイパーネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-08-11T14:05:51Z) - Pre-training Enhanced Spatial-temporal Graph Neural Network for
Multivariate Time Series Forecasting [13.441945545904504]
スケーラブルな時系列事前学習モデル(STEP)によりSTGNNが拡張される新しいフレームワークを提案する。
具体的には、非常に長期の歴史時系列から時間パターンを効率的に学習するための事前学習モデルを設計する。
我々のフレームワークは下流のSTGNNを著しく強化することができ、事前学習モデルは時間パターンを適切にキャプチャする。
論文 参考訳(メタデータ) (2022-06-18T04:24:36Z) - Recurrence-in-Recurrence Networks for Video Deblurring [58.49075799159015]
最先端のビデオデブロアリング法は、しばしばフレーム間の時間的依存性をモデル化するために、リカレントニューラルネットワークを採用する。
本稿では,短距離メモリの限界に対処する再帰型ネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-03-12T11:58:13Z) - Towards Generating Real-World Time Series Data [52.51620668470388]
時系列データ生成のための新しい生成フレームワーク - RTSGANを提案する。
RTSGANは、時系列インスタンスと固定次元潜在ベクトルの間のマッピングを提供するエンコーダデコーダモジュールを学習する。
不足した値の時系列を生成するために、RTSGANに観測埋め込み層と決定・生成デコーダを更に装備する。
論文 参考訳(メタデータ) (2021-11-16T11:31:37Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
本研究では,空間情報を用いた複雑な多次元時系列データを処理するための新しいディープセルリカレントニューラルネットワーク(DCRNN)アーキテクチャを提案する。
提案するアーキテクチャは,文献に比較して,学習可能なパラメータをかなり少なくしつつ,最先端の性能を実現している。
論文 参考訳(メタデータ) (2021-01-12T20:08:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。