論文の概要: Correlations Are Ruining Your Gradient Descent
- arxiv url: http://arxiv.org/abs/2407.10780v1
- Date: Mon, 15 Jul 2024 14:59:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 14:39:57.538292
- Title: Correlations Are Ruining Your Gradient Descent
- Title(参考訳): グラディエントな輝きの相関が消える
- Authors: Nasir Ahmad,
- Abstract要約: 自然勾配降下は、最も急勾配の方向を示す勾配ベクトルが、損失景観の局所曲率を考慮することにより、どのように改善されるかを照らしている。
ニューラルネットワークの各層におけるノード応答を含む,任意の線形変換におけるデータの相関が,モデルパラメータ間の非正規的関係を生じさせることを示す。
多層ニューラルネットワーク内でのデコリレーションを実装することで、バックプロパゲーションによるトレーニングが著しく増加しているだけでなく、過去に破滅的に失敗したバックプロパゲーションの既存の近似が再び実行されたことを示すことができる。
- 参考スコア(独自算出の注目度): 1.2432046687586285
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Herein the topics of (natural) gradient descent, data decorrelation, and approximate methods for backpropagation are brought into a dialogue. Natural gradient descent illuminates how gradient vectors, pointing at directions of steepest descent, can be improved by considering the local curvature of loss landscapes. We extend this perspective and show that to fully solve the problem illuminated by natural gradients in neural networks, one must recognise that correlations in the data at any linear transformation, including node responses at every layer of a neural network, cause a non-orthonormal relationship between the model's parameters. To solve this requires a solution to decorrelate inputs at each individual layer of a neural network. We describe a range of methods which have been proposed for decorrelation and whitening of node output, while providing a novel method specifically useful for distributed computing and computational neuroscience. Implementing decorrelation within multi-layer neural networks, we can show that not only is training via backpropagation sped up significantly but also existing approximations of backpropagation, which have failed catastrophically in the past, are made performant once more. This has the potential to provide a route forward for approximate gradient descent methods which have previously been discarded, training approaches for analogue and neuromorphic hardware, and potentially insights as to the efficacy and utility of decorrelation processes in the brain.
- Abstract(参考訳): ここでは、(自然な)勾配降下、データのデコレーション、およびバックプロパゲーションの近似方法のトピックを対話に持ち込む。
自然勾配降下は、最も急勾配の方向を示す勾配ベクトルが、損失景観の局所曲率を考慮することにより、どのように改善されるかを照らしている。
この観点を拡張し、ニューラルネットワークの自然な勾配に照らされた問題を完全解くためには、ニューラルネットワークのすべての層におけるノード応答を含む任意の線形変換におけるデータの相関が、モデルのパラメータ間の非正規的関係を引き起こすことを認識する必要がある。
これを解決するには、ニューラルネットワークの各個々の層での入力をデコレーションするソリューションが必要である。
本稿では,ノード出力のデコレーションと白化のために提案されている手法について述べるとともに,分散コンピューティングや計算神経科学に特に有用な新しい手法を提案する。
多層ニューラルネットワーク内でのデコリレーションを実装することで、バックプロパゲーションによるトレーニングが著しく増加しているだけでなく、過去に破滅的に失敗したバックプロパゲーションの既存の近似が再び実行されたことを示すことができる。
これは、これまで捨てられていた近似勾配降下法、アナログおよびニューロモルフィックハードウェアのトレーニングアプローチ、および脳におけるデコリレーションプロセスの有効性と有用性に関する潜在的洞察の経路を提供する可能性がある。
関連論文リスト
- Approximated Likelihood Ratio: A Forward-Only and Parallel Framework for Boosting Neural Network Training [30.452060061499523]
本稿では、勾配推定における計算およびメモリ要求を軽減するために、LR法を近似する手法を提案する。
ニューラルネットワークトレーニングにおける近似手法の有効性を実験により実証した。
論文 参考訳(メタデータ) (2024-03-18T23:23:50Z) - Can Forward Gradient Match Backpropagation? [2.875726839945885]
フォワードグラディエントはニューラルネットワークトレーニングに有効であることが示されている。
我々は、小さな局所的な補助ネットワークから得られるフィードバックなど、より有望な方向の勾配推定を強く偏り付けることを提案する。
局所損失から得られた勾配を候補方向として用いた場合,前方勾配法におけるランダムノイズを大幅に改善することがわかった。
論文 参考訳(メタデータ) (2023-06-12T08:53:41Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - Implicit Bias in Leaky ReLU Networks Trained on High-Dimensional Data [63.34506218832164]
本研究では,ReLUを活性化した2層完全連結ニューラルネットワークにおける勾配流と勾配降下の暗黙的バイアスについて検討する。
勾配流には、均一なニューラルネットワークに対する暗黙のバイアスに関する最近の研究を活用し、リーク的に勾配流が2つ以上のランクを持つニューラルネットワークを生成することを示す。
勾配降下は, ランダムな分散が十分小さい場合, 勾配降下の1ステップでネットワークのランクが劇的に低下し, トレーニング中もランクが小さくなることを示す。
論文 参考訳(メタデータ) (2022-10-13T15:09:54Z) - Scaling Forward Gradient With Local Losses [117.22685584919756]
フォワード学習は、ディープニューラルネットワークを学ぶためのバックプロップに代わる生物学的に妥当な代替手段である。
重みよりも活性化に摂動を適用することにより、前方勾配のばらつきを著しく低減できることを示す。
提案手法はMNIST と CIFAR-10 のバックプロップと一致し,ImageNet 上で提案したバックプロップフリーアルゴリズムよりも大幅に優れていた。
論文 参考訳(メタデータ) (2022-10-07T03:52:27Z) - Cogradient Descent for Dependable Learning [64.02052988844301]
双線形最適化問題に対処するために,CoGDアルゴリズムに基づく信頼度の高い学習法を提案する。
CoGDは、ある変数がスパーシティ制約を持つ場合の双線形問題を解くために導入された。
また、特徴と重みの関連を分解するためにも使用できるため、畳み込みニューラルネットワーク(CNN)をより良く訓練するための我々の手法をさらに一般化することができる。
論文 参考訳(メタデータ) (2021-06-20T04:28:20Z) - Low-memory stochastic backpropagation with multi-channel randomized
trace estimation [6.985273194899884]
ニューラルネットワークにおける畳み込み層の勾配を多チャンネルランダム化トレース推定手法を用いて近似する。
他の手法と比較して、このアプローチは単純で分析に適しており、メモリフットプリントを大幅に削減する。
本稿では、バックプロパゲーションでトレーニングしたネットワークの性能と、メモリ使用量の最大化と計算オーバーヘッドの最小化を図りながら、エラーを制御する方法について論じる。
論文 参考訳(メタデータ) (2021-06-13T13:54:02Z) - Convergence rates for gradient descent in the training of
overparameterized artificial neural networks with biases [3.198144010381572]
近年、人工ニューラルネットワークは、古典的なソリューションが近づいている多数の問題に対処するための強力なツールに発展しています。
ランダムな勾配降下アルゴリズムが限界に達する理由はまだ不明である。
論文 参考訳(メタデータ) (2021-02-23T18:17:47Z) - Solving Sparse Linear Inverse Problems in Communication Systems: A Deep
Learning Approach With Adaptive Depth [51.40441097625201]
疎信号回復問題に対するエンドツーエンドの訓練可能なディープラーニングアーキテクチャを提案する。
提案手法は,出力するレイヤ数を学習し,各タスクのネットワーク深さを推論フェーズで動的に調整する。
論文 参考訳(メタデータ) (2020-10-29T06:32:53Z) - Activation Relaxation: A Local Dynamical Approximation to
Backpropagation in the Brain [62.997667081978825]
活性化緩和(AR)は、バックプロパゲーション勾配を力学系の平衡点として構成することで動機付けられる。
我々のアルゴリズムは、正しいバックプロパゲーション勾配に迅速かつ堅牢に収束し、単一のタイプの計算単位しか必要とせず、任意の計算グラフで操作できる。
論文 参考訳(メタデータ) (2020-09-11T11:56:34Z) - Semi-Implicit Back Propagation [1.5533842336139065]
ニューラルネットワークトレーニングのための半単純バック伝搬法を提案する。
ニューロンの差は後方方向に伝播し、パラメータは近位写像で更新される。
MNISTとCIFAR-10の両方の実験により、提案アルゴリズムは損失減少とトレーニング/検証の精度の両方において、より良い性能をもたらすことが示された。
論文 参考訳(メタデータ) (2020-02-10T03:26:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。