Mammographic Breast Positioning Assessment via Deep Learning
- URL: http://arxiv.org/abs/2407.10796v1
- Date: Mon, 15 Jul 2024 15:14:10 GMT
- Title: Mammographic Breast Positioning Assessment via Deep Learning
- Authors: Toygar Tanyel, Nurper Denizoglu, Mustafa Ege Seker, Deniz Alis, Esma Cerekci, Ercan Karaarslan, Erkin Aribal, Ilkay Oksuz,
- Abstract summary: Poor positioning in mammography can lead to diagnostic errors, increased patient stress, and higher costs due to recalls.
This paper introduces a novel deep learning (DL) methodology to quantitatively assess mammogram positioning quality.
Our method identifies key anatomical landmarks, such as the nipple and pectoralis muscle, and automatically draws a posterior nipple line (PNL)
Our results indicate that models incorporating attention mechanisms and CoordConv module increase the accuracy in classifying breast positioning quality.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Breast cancer remains a leading cause of cancer-related deaths among women worldwide, with mammography screening as the most effective method for the early detection. Ensuring proper positioning in mammography is critical, as poor positioning can lead to diagnostic errors, increased patient stress, and higher costs due to recalls. Despite advancements in deep learning (DL) for breast cancer diagnostics, limited focus has been given to evaluating mammography positioning. This paper introduces a novel DL methodology to quantitatively assess mammogram positioning quality, specifically in mediolateral oblique (MLO) views using attention and coordinate convolution modules. Our method identifies key anatomical landmarks, such as the nipple and pectoralis muscle, and automatically draws a posterior nipple line (PNL), offering robust and inherently explainable alternative to well-known classification and regression-based approaches. We compare the performance of proposed methodology with various regression and classification-based models. The CoordAtt UNet model achieved the highest accuracy of 88.63% $\pm$ 2.84 and specificity of 90.25% $\pm$ 4.04, along with a noteworthy sensitivity of 86.04% $\pm$ 3.41. In landmark detection, the same model also recorded the lowest mean errors in key anatomical points and the smallest angular error of 2.42 degrees. Our results indicate that models incorporating attention mechanisms and CoordConv module increase the accuracy in classifying breast positioning quality and detecting anatomical landmarks. Furthermore, we make the labels and source codes available to the community to initiate an open research area for mammography, accessible at https://github.com/tanyelai/deep-breast-positioning.
Related papers
- Unsupversied feature correlation model to predict breast abnormal
variation maps in longitudinal mammograms [1.6249398255272316]
This study focuses on improving the early detection and accurate diagnosis of breast abnormalities.
A novel unsupervised feature correlation network was developed to predict maps indicating breast abnormal variations using longitudinal 2D mammograms.
The results of the study show that the proposed model outperforms the baseline models in terms of Accuracy, Sensitivity, Specificity, Dice score, and cancer detection rate.
arXiv Detail & Related papers (2023-12-28T01:37:55Z) - Shape Matters: Detecting Vertebral Fractures Using Differentiable
Point-Based Shape Decoding [51.38395069380457]
Degenerative spinal pathologies are highly prevalent among the elderly population.
Timely diagnosis of osteoporotic fractures and other degenerative deformities facilitates proactive measures to mitigate the risk of severe back pain and disability.
In this study, we specifically explore the use of shape auto-encoders for vertebrae.
arXiv Detail & Related papers (2023-12-08T18:11:22Z) - Multi-Head Feature Pyramid Networks for Breast Mass Detection [48.24995569980701]
We propose the multi-head feature pyramid module (MHFPN) to solve the problem of unbalanced focus of target boxes during feature map fusion.
Experimental studies show that, comparing to the SOTA detection baselines, our method improves by 6.58% (in AP@50) and 5.4% (in TPR@50) on the commonly used INbreast dataset.
arXiv Detail & Related papers (2023-02-22T03:02:52Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
Prostate cancer (PCa) is one of the leading causes of death among men, with almost 1.41 million new cases and around 375,000 deaths in 2020.
To perform an automatic diagnosis, prostate tissue samples are first digitized into gigapixel-resolution whole-slide images.
Small subimages called patches are extracted and predicted, obtaining a patch-level classification.
arXiv Detail & Related papers (2021-05-20T18:13:58Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - DenseNet for Breast Tumor Classification in Mammographic Images [0.0]
The aim of this study is to build a deep convolutional neural network method for automatic detection, segmentation, and classification of breast lesions in mammography images.
Based on deep learning the Mask-CNN (RoIAlign) method was developed to features selection and extraction; and the classification was carried out by DenseNet architecture.
arXiv Detail & Related papers (2021-01-24T03:30:59Z) - On segmentation of pectoralis muscle in digital mammograms by means of
deep learning [1.7114784273243784]
The present paper introduces a two-step segmentation strategy based on a combined use of data-driven prediction and graph-based image processing.
The proposed method employs a convolutional neural network (CNN) which is designed to predict the location of breast-pectoral boundary.
The results of comparative analysis show considerable improvement over state-of-the-art, while offering the possibility of model-free and fully automatic processing.
arXiv Detail & Related papers (2020-08-29T03:38:11Z) - Automatic elimination of the pectoral muscle in mammograms based on
anatomical features [0.0]
Digital mammogram inspection is the most popular technique for early detection of abnormalities in human breast tissue.
The presence of the pectoral muscle might affect the results of breast lesions detection.
We propose an approach based on anatomical features to tackle this problem.
arXiv Detail & Related papers (2020-08-17T20:36:46Z) - Learning from Suspected Target: Bootstrapping Performance for Breast
Cancer Detection in Mammography [6.323318523772466]
We introduce a novel top likelihood loss together with a new sampling procedure to select and train the suspected target regions.
We firstly test our proposed method on a private dense mammogram dataset.
Results show that our proposed method greatly reduce the false positive rate and the specificity is increased by 0.25 on detecting mass type cancer.
arXiv Detail & Related papers (2020-03-01T09:04:24Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
We propose a novel deep learning architecture called Small Tumor-Aware Network (STAN) to improve the performance of segmenting tumors with different size.
The proposed approach outperformed the state-of-the-art approaches in segmenting small breast tumors.
arXiv Detail & Related papers (2020-02-03T22:25:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.