Data-Guided Physics-Informed Neural Networks for Solving Inverse Problems in Partial Differential Equations
- URL: http://arxiv.org/abs/2407.10836v1
- Date: Mon, 15 Jul 2024 15:47:24 GMT
- Title: Data-Guided Physics-Informed Neural Networks for Solving Inverse Problems in Partial Differential Equations
- Authors: Wei Zhou, Y. F. Xu,
- Abstract summary: Physics-informed neural networks (PINNs) represent a significant advancement in machine learning.
PINNs have been successfully applied to solve various forward and inverse problems in partial differential equations (PDEs)
This study proposes a novel framework termed data-guided physics-informed neural networks (DG-PINNs)
- Score: 3.231578125191615
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Physics-informed neural networks (PINNs) represent a significant advancement in scientific machine learning by integrating fundamental physical laws into their architecture through loss functions. PINNs have been successfully applied to solve various forward and inverse problems in partial differential equations (PDEs). However, a notable challenge can emerge during the early training stages when solving inverse problems. Specifically, data losses remain high while PDE residual losses are minimized rapidly, thereby exacerbating the imbalance between loss terms and impeding the overall efficiency of PINNs. To address this challenge, this study proposes a novel framework termed data-guided physics-informed neural networks (DG-PINNs). The DG-PINNs framework is structured into two distinct phases: a pre-training phase and a fine-tuning phase. In the pre-training phase, a loss function with only the data loss is minimized in a neural network. In the fine-tuning phase, a composite loss function, which consists of the data loss, PDE residual loss, and, if available, initial and boundary condition losses, is minimized in the same neural network. Notably, the pre-training phase ensures that the data loss is already at a low value before the fine-tuning phase commences. This approach enables the fine-tuning phase to converge to a minimal composite loss function with fewer iterations compared to existing PINNs. To validate the effectiveness, noise-robustness, and efficiency of DG-PINNs, extensive numerical investigations are conducted on inverse problems related to several classical PDEs, including the heat equation, wave equation, Euler--Bernoulli beam equation, and Navier--Stokes equation. The numerical results demonstrate that DG-PINNs can accurately solve these inverse problems and exhibit robustness against noise in training data.
Related papers
- Characteristic Performance Study on Solving Oscillator ODEs via Soft-constrained Physics-informed Neural Network with Small Data [6.3295494018089435]
This paper compares physics-informed neural network (PINN), conventional neural network (NN) and traditional numerical discretization methods on solving differential equations (DEs)
We focus on the soft-constrained PINN approach and formalized its mathematical framework and computational flow for solving Ordinary DEs and Partial DEs.
We demonstrate that the DeepXDE-based implementation of PINN is not only light code and efficient in training, but also flexible across CPU/GPU platforms.
arXiv Detail & Related papers (2024-08-19T13:02:06Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Robust Regression with Highly Corrupted Data via Physics Informed Neural
Networks [4.642273921499256]
Physics-informed neural networks (PINNs) have been proposed to solve two main classes of problems.
We show the generalizability, accuracy and efficiency of the proposed algorithms for recovering governing equations from noisy and corrupted measurement data.
arXiv Detail & Related papers (2022-10-19T15:21:05Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
In this work, we assess the ability of physics-informed neural networks (PINNs) to solve increasingly-complex coupled ordinary differential equations (ODEs)
We show that PINNs eventually fail to produce correct solutions to these benchmarks as their complexity increases.
We identify several reasons why this may be the case, including insufficient network capacity, poor conditioning of the ODEs, and high local curvature, as measured by the Laplacian of the PINN loss.
arXiv Detail & Related papers (2022-10-14T15:01:32Z) - Reduced-PINN: An Integration-Based Physics-Informed Neural Networks for
Stiff ODEs [0.0]
Physics-informed neural networks (PINNs) have recently received much attention due to their capabilities in solving both forward and inverse problems.
We propose a new PINN architecture, called Reduced-PINN, that utilizes a reduced-order integration method to enable the PINN to solve stiff chemical kinetics.
arXiv Detail & Related papers (2022-08-23T09:20:42Z) - Critical Investigation of Failure Modes in Physics-informed Neural
Networks [0.9137554315375919]
We show that a physics-informed neural network with a composite formulation produces highly non- learned loss surfaces that are difficult to optimize.
We also assess the training both approaches on two elliptic problems with increasingly complex target solutions.
arXiv Detail & Related papers (2022-06-20T18:43:35Z) - Enhanced Physics-Informed Neural Networks with Augmented Lagrangian
Relaxation Method (AL-PINNs) [1.7403133838762446]
Physics-Informed Neural Networks (PINNs) are powerful approximators of solutions to nonlinear partial differential equations (PDEs)
We propose an Augmented Lagrangian relaxation method for PINNs (AL-PINNs)
We demonstrate through various numerical experiments that AL-PINNs yield a much smaller relative error compared with that of state-of-the-art adaptive loss-balancing algorithms.
arXiv Detail & Related papers (2022-04-29T08:33:11Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
We develop a novel approach that can significantly accelerate the training of Physics-Informed Neural Networks.
In particular, we parameterize the PDE solution by the Gaussian smoothed model and show that, derived from Stein's Identity, the second-order derivatives can be efficiently calculated without back-propagation.
Experimental results show that our proposed method can achieve competitive error compared to standard PINN training but is two orders of magnitude faster.
arXiv Detail & Related papers (2022-02-18T18:07:54Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINO is the first hybrid approach incorporating data and PDE constraints at different resolutions to learn the operator.
The resulting PINO model can accurately approximate the ground-truth solution operator for many popular PDE families.
arXiv Detail & Related papers (2021-11-06T03:41:34Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
Recent work in scientific machine learning has developed so-called physics-informed neural network (PINN) models.
We demonstrate that, while existing PINN methodologies can learn good models for relatively trivial problems, they can easily fail to learn relevant physical phenomena even for simple PDEs.
We show that these possible failure modes are not due to the lack of expressivity in the NN architecture, but that the PINN's setup makes the loss landscape very hard to optimize.
arXiv Detail & Related papers (2021-09-02T16:06:45Z) - Topological obstructions in neural networks learning [67.8848058842671]
We study global properties of the loss gradient function flow.
We use topological data analysis of the loss function and its Morse complex to relate local behavior along gradient trajectories with global properties of the loss surface.
arXiv Detail & Related papers (2020-12-31T18:53:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.